Skip to main content
Log in

Treatment of Philadelphia Chromosome-Positive Acute Lymphocytic Leukemia

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Over the past 15 years, the landscape of Ph+ ALL has changed dramatically. No longer the most dreaded form of acute leukemia, the advent of tyrosine kinase inhibitors (TKIs) has ushered in a new era, as TKIs have become the backbone of any treatment regimen for Ph+ ALL. A greater number achieve a complete remission allowing for more patients to get the transplant, although probably less patients need a transplant. For the first time in decades, there is hope for older patients with Ph+ ALL. Defining residual disease at an increasingly lower level of disease burdens termed minimal residual disease (MRD) has allowed treatment algorithms to be designed based on deep molecular responses. The aggregate of recent data suggest that this is the most important endpoint to predict for long-term outcome and to decide on the optimal post-remission approach, including transplant. Novel agents, such as blinatumumab, are likely to be incorporated into therapy for relapse and as initial therapy in an attempt to increase the number of patients who may have deep molecular responses. Many more patients with Ph+ ALL are long-term survivors, and the future is looking brighter for this group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Papadantonakis N, Advani AS. Recent advances and novel treatment paradigms in acute lymphocytic leukemia. Ther Adv Hematol. 2016;7(5):252–69.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Forghieri F, Luppi M, Potenza L. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology. 2015;20(10):618–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XІІ/ECOG E2993. Blood. 2005;106:3760–7.

    Article  CAS  PubMed  Google Scholar 

  4. Burmeister T, Schwartz S, Bartram CR, et al. Patients’ age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008;112:918–9.

    Article  CAS  PubMed  Google Scholar 

  5. Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia. 1991;5:196–9.

    CAS  PubMed  Google Scholar 

  6. Melo JV. BCR-ABL gene variants. Baillieres Clin Haematol. 1997;10:203–22.

    Article  CAS  PubMed  Google Scholar 

  7. Dombret H, Gabert J, Boiron JM, et al. Groupe d’Etude et de Traitement de la Leucemie Aigue Lymphoblastique de l’Adulte (GET-LALA Group). Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia—results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–66.

    Article  CAS  PubMed  Google Scholar 

  8. Radich JP. Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2001;15:21–36.

    Article  CAS  PubMed  Google Scholar 

  9. Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ ECOG2993. Blood. 2009;113(19):4489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee KH, Lee JH, Choi SJ, et al. Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2005;19:1509–16.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas DA, Faderl S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103:4396–407.

    Article  CAS  PubMed  Google Scholar 

  12. Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR–ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24:460–6.

    Article  CAS  PubMed  Google Scholar 

  13. Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve longterm outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28:3644–52. 19

    Article  CAS  PubMed  Google Scholar 

  14. Wassmann B, Pfeifer H, Goekbuget N, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph1 ALL). Blood. 2006;108:1469–77.

    Article  CAS  PubMed  Google Scholar 

  15. Towatari M, Yanada M, Usui N, et al. Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR–ABL-positive acute lymphoblastic leukemia. Blood. 2004;104:3507–12.

    Article  CAS  PubMed  Google Scholar 

  16. de Labarthe A, Rousselot P, Huguet-Rigal F, et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood. 2007;109:1408–13.

    Article  PubMed  Google Scholar 

  17. • Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced intensity chemotherapy combined with imatinib in adults with Ph positive acute lymphoblastic leukemia. Blood. 2015;125:3711–9. Large prospective study of use of imatinib in Ph+ ALL.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas DA, O’Brien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome–negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pfeifer H, Goekbuget N, Volp C, et al. Long-term outcome of 335 patients receiving different schedules of imatinib and chemotherapy as front-line treatment for Philadelphia-positive acute lymphoblastic leukemia (Ph1 ALL) [abstract]. Blood. 2010;116:173.

    Google Scholar 

  20. Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121(15):2517–28.

    Article  PubMed  Google Scholar 

  21. Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutions of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia. Blood. 2007;110:727–34.

    Article  CAS  PubMed  Google Scholar 

  22. Daver N, Cortes J, Ravandi F, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood. 2015;125(21):3236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hofmann WK, Komor M, Hoelzer D, Ottmann OG. Mechanisms of resistance to STI571 (imatinib) in Philadelphia-chromosome positive acute lymphoblatic leukemia. Leuk Lymphoma. 2004;105:655–60.

    Article  Google Scholar 

  24. Jones D, Thomas D, Yin CC, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113:985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.

    Article  CAS  PubMed  Google Scholar 

  26. Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Luo FR, Yang Z, Camuso A, et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res. 2006;12(23):7180–6.

    Article  CAS  PubMed  Google Scholar 

  28. Porkka K, Koskenvesa P, Lundán T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12.

    Article  CAS  PubMed  Google Scholar 

  29. Talpaz M, Shah NP, Kantarijan H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogentic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110:2309–15.

    Article  CAS  PubMed  Google Scholar 

  31. Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.

    Article  CAS  PubMed  Google Scholar 

  32. Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014;89(3):282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Emole J, Talabi T, Pinilla-Ibarz J. Update on the management of Philadelphia chromosome positive chronic myelogenous leukemia: role of nilotinib. Biologics. 2016;10:23–31. Important study on use of dasatinib in Ph+ ALL.

    PubMed  PubMed Central  Google Scholar 

  34. Merante S, Colombo AA, Calatroni S, Rocca B, Boni M, Bernasconi P, et al. Nilotinib restores long-term full-donor chimerism in Ph-positive acute lymphoblastic leukemia relapsed after allogeneic transplantation. Bone Marrow Transplant. 2009;44:263–4.

    Article  CAS  PubMed  Google Scholar 

  35. Tiribelli M, Sperotto A, Candoni A, Simeone E, Buttignol S, Fanin R. Nilotinib and donor lymphocyte infusion in the treatment of Philadelphia-positive acute lymphoblastic leukemia (Ph þ ALL) relapsing after allogeneic stem cell transplantation and resistant to imatinib. Leuk Res. 2009;33:174–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ottmann OG, Larson RA, Kantarjian HM, et al. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome--positive acute lymphoblastic leukemia. Leukemia. 2013 Jun;27(6):1411–3.

    Article  CAS  PubMed  Google Scholar 

  37. • Kim DY, Joo YD, Lim SN, Kim SD, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56. Large study of use of nilotinib in Ph+ ALL.

    Article  CAS  PubMed  Google Scholar 

  38. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30:3486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first -line therapy for patients with Philadelphia chromosome positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;(15):1547–55. Emerging data on use of ponatinib in Ph+ ALL

  40. Ravandi F, O’Brien S, Thomas D, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph1) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ravandi F, O’Brien SM, Cortes JE, et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121:4158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ravandi F, Jorgensen JL, Thomas DA, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122:1214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee S, Kim DW, Cho BS, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012;26:2367–74.

    Article  CAS  PubMed  Google Scholar 

  44. Yoon JH, Yhim HY, Kwak JY, et al. Minimal residual disease-based effect and long-term outcome of first-line dasatinib combined with chemotherapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Ann Oncol. 2016;27:1081–8.

    Article  PubMed  Google Scholar 

  45. •• Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128(4):504–7. Incorporation of MRD into algorithm of management of Ph+ ALL.

    Article  CAS  PubMed  Google Scholar 

  46. Wang D, Pan H, Wang Y. T315 L: a novel mutation within BCR-ABL kinase domain confers resistance against ponatinib. Leuk Lymphoma. 2016;4:1–3.

    Google Scholar 

  47. Dombret H, Gabert J, Boiron JM, Rigal-Huguet F, Blaise D, Thomas X, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia--results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–66.

    Article  CAS  PubMed  Google Scholar 

  48. Fielding A, Rowe J, Richards S, Buck G, Moorman A, Durrant I, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009;113(19):4489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yanada M, Takeuchi J, Sugiura I, et al. Japan Adult Leukemia Study Group. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lee S, Kim DW, Cho BS, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012;26(11):2367–74.

    Article  CAS  PubMed  Google Scholar 

  51. Yanada M, Sugiura I, Takeuchi J, et al. Japan Adult Leukemia Study Group. Prospective monitoring of BCR-ABL1 transcript levels in patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia undergoing imatinib-combined chemotherapy. Br J Haematol. 2008;143(4):503–10.

    PubMed  Google Scholar 

  52. Daver N, Thomas D, Ravandi F, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100(5):653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survivals in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109:3676–8.

    Article  CAS  PubMed  Google Scholar 

  54. Foa R, Vitale A, Guarini A, et al. Dasatinib as first line treatment of adult Ph+ acute lymphoblastic leukemia (ALL) patients: final results of the GINEMA LAL1205 study. Blood 2008;112 ( abstract 305).

  55. •• Rousselot P, Coudé MM, Gokbuget N, et al. European Working Group on Adult ALL (EWALL) group. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82. Very important consensus statement for older patients with Ph+ ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bachanova V, Marks DI, Zhang MJ, et al. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia. 2014;28:658–65.

    Article  CAS  PubMed  Google Scholar 

  57. Malagola M, Papayannidis C, Baccarani M. Tyrosine kinase inhibitors in Ph+ acute lymphoblastic leukaemia: facts and perspectives. Ann Hematol. 2016;95(5):681–93.

    Article  CAS  PubMed  Google Scholar 

  58. •• Giebel S, Czyz A, Ottmann O, Baron F, Brissot E, et al. Use of tyrosine kinase inhibitors to prevent relapse after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a position statement of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Cancer. 2016;122(19):2941–51. Suggested guides for use of TKIs post allogeneic transplantation

    Article  CAS  PubMed  Google Scholar 

  59. Ronson A, Tvito A, Rowe JM. Treatment of relapsed/refractory acute lymphoblastic leukemia in adults. Curr Oncol Rep. 2016;18(6):39.

    Article  PubMed  Google Scholar 

  60. Patel B, Rai L, Buck G, et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol. 2010;148(1):80.

    Article  CAS  PubMed  Google Scholar 

  61. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27(31):5175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s oncology group study AALL0031. Leukemia. 2014;28(7):1467–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herold T, Schneider S, Metzeler K, Neumann M, et al. Philadelphia chromosome-like acut lymphoblastic leukemia in adults have frequent IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica 2016, in press.

  64. •• Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15. Classic paper with comprehensive description of Ph-like ALL

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lengline E, Beldjord K, Dombret H, Soulier J, Boissel N, Clappier E. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98:e146–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kobayashi K, Miyagawa N, Mitsui K, Matsuoka M, Kojima Y, Takahashi H, et al. TKI dasatinib monotherapy for a patient with ph-like ALL bearing ATF7IP/PDGFRB translocation. Pediatr Blood Cancer. 2015;62:1058–60.

    Article  PubMed  Google Scholar 

  67. Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG, et al. Targeting JAK1/2 andmTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120:3510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts KG, Pei D, Campana D, Payne-Turner D, Li Y, Cheng C, et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32:3012–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ofran Y, Izraeli S. BCR-ABL (Ph)-like acute leukemia – pathogenesis, diagnosis and therapeutic options. Blood reviews in press, 2016.

  70. Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol Immunol. 2015;67(2 Pt A):107–16.

    Article  CAS  PubMed  Google Scholar 

  71. Kantarjian HM, De Angelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53.

    Article  CAS  PubMed  Google Scholar 

  72. Wickramasinghe D. Tumor and T cell engagement by BiTE. Discov Med, 2013, 149–152.

  73. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the Tcell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8.

    Article  CAS  PubMed  Google Scholar 

  74. Teachery DT, Rheingold SR, Maude SL, Zugmaier G, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;5154-7

  75. Martinelli G, Dombret H, Chevallier P, et al. Complete molecular and hematologic response in adult patients with relapsed/refractory (R/R) Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia (ALL) following treatment with blinatumomab: results from a phase 2 single-arm, multicenter study (Alcantara). Blood. 2015;126:679.

    Google Scholar 

  76. •• Litzow MR et al. Are hematopoetic cell transplants still necessary in Philadelphia chromosome positive acute lymphoblastic leukemia in adults. BMT 2016 in press. Important synopsis of some of the current crucial issues in Ph+ ALL

  77. A phase 2 study of the JAK1/JAK2 inhibitor ruxolitinib with chemotherapy in children with de novo high-risk CRLF2-rearranged and/or JAK pathway-mutant acute lymphoblastic leukemia. Available at https://clinicaltrials.gov/ct2/show/NCT02723994. Accessed May 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Ronson MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronson, A., Tvito, A. & Rowe, J.M. Treatment of Philadelphia Chromosome-Positive Acute Lymphocytic Leukemia. Curr. Treat. Options in Oncol. 18, 20 (2017). https://doi.org/10.1007/s11864-017-0455-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0455-3

Keywords

Navigation