Skip to main content

Advertisement

Log in

BRAF-Mutated Colorectal Cancer: What Is the Optimal Strategy for Treatment?

  • Lower Gastrointestinal Cancers (AB Benson, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 10 August 2017

Opinion statement

The BRAF activating mutation, harbored by approximately 10% of colorectal cancers (CRC), confers dramatic prognosis to advanced diseases. In early-stage setting, the identification of the BRAF mutation does not impact the therapeutic decision. Yet, the BRAF mutation could be considered as a stratification factor in adjuvant trials, because of its prognostic impact after relapse. Moreover, both BRAF mutation and mismatch repair (MMR) statuses should be determined in all CRC to help identify sporadic tumors versus Lynch syndrome-related tumors. Indeed, in patients with MMR-deficient (dMMR) tumors and MLH1 loss of expression, the BRAFV600E mutation indicates a sporadic origin. In advanced BRAF-mutated CRC, the standard of care remains fluoropyrimidine-based cytotoxic regimen in combination with bevacizumab. Although a recent meta-analysis showed that there was insufficient data to justify the exclusion of anti-EGFR monoclonal antibodies, antiangiogenic agents should be preferred in the first-line setting. Despite the lack of a randomized phase 3 study dedicated to BRAF-mutated CRC, chemotherapy intensification combining a quadruple association of 5-fluorouracil, oxaliplatin, irinotecan (FOLFOXIRI), and bevacizumab seems like a valid option. Although first results with BRAF inhibitors as single agents in BRAF-mutated CRC were disappointing, their association with therapies targeting the MAPK pathway seems to overcome the primary resistance to BRAF inhibition. In the field of sporadic CRC, the BRAF mutation is strongly associated with MMR deficiency. Considering breakthrough results of immune checkpoint inhibitors in dMMR repair tumors, determination of the MMR status appears to be mandatory. Given the dramatic prognosis conferred by the BRAF mutation, patients with BRAF-mutated advanced CRC need to be systematically identified and proposed for clinical trial enrolment in order to benefit from innovative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and III resected Colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28:466–74.

    Article  CAS  PubMed  Google Scholar 

  2. Taieb J, Zaanan A, Le Malicot K, et al. Prognostic effect of BRAF and KRAS mutations in patients with stage III colon cancer treated with leucovorin, fluorouracil, and oxaliplatin with or without cetuximab: a post hoc analysis of the PETACC-8 trial. JAMA Oncol. 2016;2:643.

    Article  Google Scholar 

  3. André T, de Gramont A, Vernerey D, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III Colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol. 2015;33:4176–87.

    Article  PubMed  Google Scholar 

  4. Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20:5322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gavin PG, Colangelo LH, Fumagalli D, et al. Mutation profiling and microsatellite instability in stage II and III Colon cancer: an assessment of their prognostic and oxaliplatin predictive value. Clin Cancer Res. 2012;18:6531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.

    Article  CAS  PubMed  Google Scholar 

  7. Tran B, Kopetz S, Tie J, Gibbs P, Jiang Z-Q, Lieu CH, Agarwal A, Maru DM, Sieber O, Desai J. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117:4623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Greene C, Atreya CE, McWhirter R, Ikram N, Loon KV, Venook AP, Yeh BM, Behr S. Differential radiographic appearance of BRAF V600E mutant metastatic colorectal cancer (mCRC) in patients matched by primary tumor location. J Clin Oncol. 2016;34(suppl 4S):abstr 554.

    Article  Google Scholar 

  9. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  10. •• Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. Guinney and collegues deciphered colorectal cancers through a consensus molecular classification within BRAF-mutated and MMR-deficient tumors which constitute a unique subgroup

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Cremolini C, Bartolomeo MD, Amatu A, et al. BRAF codons 594 and 596 mutations identify a new molecular subtype of metastatic colorectal cancer at favorable prognosis. Ann Oncol. 2015;26:2092–7. Cremolini et al. searched for all BRAF mutations and showed that non-V600E mutations do not impact prognosis as BRAFV600E mutation

  12. Jones JC, Kipp B, Leal AD, Voss JS, Hubbard JM, McWilliams RR, Grothey A. Commonality and clinical, pathological, and prognostic characteristics of non-V600E BRAF mutations (BRAFMut) in metastatic colorectal cancers (mCRC) compared to V600 BRAFMut CRCs. J Clin Oncol. 2016;34:abstr 3529.

    Article  Google Scholar 

  13. Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol. 2011;29:1261–70.

    Article  PubMed  Google Scholar 

  14. French AJ, Sargent DJ, Burgart LJ, Foster NR, Kabat BF, Goldberg R, Shepherd L, Windschitl HE, Thibodeau SN. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14:3408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seligmann J, Fisher D, Elliott F, et al. Exploring the poor outcomes of BRAF mutant (BRAF Mut) advanced colorectal cancer (aCRC): analysis from 2,530 patients (pts) in randomized clinical trials (RCTs). J Clin Oncol. 2015;33:abstr 3509.

    Google Scholar 

  16. Falcone A. Biweekly chemotherapy with oxaliplatin, irinotecan, infusional fluorouracil, and leucovorin: a pilot study in patients with metastatic colorectal cancer. J Clin Oncol. 2002;20:4006–14.

    Article  CAS  PubMed  Google Scholar 

  17. Masi G, Allegrini G, Cupini S, Marcucci L, Cerri E, Brunetti I, Fontana E, Ricci S, Andreuccetti M, Falcone A. First-line treatment of metastatic colorectal cancer with irinotecan, oxaliplatin and 5-fluorouracil/leucovorin (FOLFOXIRI): results of a phase II study with a simplified biweekly schedule. Ann Oncol. 2004;15:1766–72.

    Article  CAS  PubMed  Google Scholar 

  18. Falcone A, Ricci S, Brunetti I, et al. Phase III trial of Infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with Infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol. 2007;25:1670–6.

    Article  CAS  PubMed  Google Scholar 

  19. Masi G, Loupakis F, Salvatore L, et al. Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. Lancet Oncol. 2010;11:845–52.

    Article  CAS  PubMed  Google Scholar 

  20. Loupakis F, Cremolini C, Salvatore L, et al. FOLFOXIRI plus bevacizumab as first-line treatment in BRAF mutant metastatic colorectal cancer. Eur J Cancer. 2014;50:57–63.

    Article  CAS  PubMed  Google Scholar 

  21. Loupakis F, Cremolini C, Masi G, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18.

    Article  PubMed  Google Scholar 

  22. •• Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015;16:1306–15. Post hoc analysis of the phase 3 TRIBE study shows that FOLFOXIRI plus bevacizumab is a valid option for patients with BRAF-mutated mCRC (median OS 19.0 versus 10.7 months, HR = 0.54, 95% CI 0.24–1.20)

  23. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422.

    Article  CAS  PubMed  Google Scholar 

  24. Cremolini C, Loupakis F, Rossini D, et al. FOLFOXIRI with or without bevacizumab (bev) as first-line treatment of metastatic colorectal cancer (mCRC): a propensity score-based analysis. Ann Oncol. 2014;25(suppl_4):iv167–209.

    Article  Google Scholar 

  25. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  CAS  PubMed  Google Scholar 

  26. Wainberg Z, Hecht JR. A phase III randomized, open-label, controlled trial of chemotherapy and bevacizumab with or without panitumumab in the first-line treatment of patients with metastatic colorectal cancer. Clin Colorectal Cancer. 2006;5:363–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lièvre A, Bachet J-B, Corre DL, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  PubMed  Google Scholar 

  28. Tol J, Nagtegaal ID, Punt CJA. BRAF mutation in metastatic colorectal cancer. N Engl J Med. 2009;361:98–9.

    Article  CAS  PubMed  Google Scholar 

  29. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

    Article  CAS  PubMed  Google Scholar 

  30. Bokemeyer C, Cutsem EV, Rougier P, Ciardiello F, Heeger S, Schlichting M, Celik I, Köhne C-H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48:1466–75.

    Article  CAS  PubMed  Google Scholar 

  31. Douillard J-Y, Oliner KS, Siena S, et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  32. Seymour MT, Brown SR, Middleton G, et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol. 2013;14:749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karapetis CS, Jonker D, Daneshmand M, et al. PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer—results from NCIC CTG/AGITG CO.17. Clin Cancer Res. 2014;20:744–53.

    Article  CAS  PubMed  Google Scholar 

  34. Peeters M, Price TJ, Cervantes A, et al. Final results from a randomized phase 3 study of FOLFIRI panitumumab for second-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25:107–16.

    Article  CAS  PubMed  Google Scholar 

  35. Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer. 2015;51:587–94.

    Article  CAS  PubMed  Google Scholar 

  36. Rowland A, Dias MM, Wiese MD, Kichenadasse G, McKinnon RA, Karapetis CS, Sorich MJ. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer. 2015;112:1888–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stintzing S, Jung A, Rossius L, Modest DP, Fischer von Weikersthal L, Decker T, Möhler M, Scheithauer W, Kirchner T, Heinemann V. Analysis of KRAS/NRAS and BRAF mutations in FIRE-3: a randomized phase III study of FOLFIRI plus cetuximab or bevacizumab as first-line treatment for wild-type (WT) KRAS (exon 2) metastatic colorectal cancer (mCRC) patients. Eur J Cancer. 2013;49(suppl_3):S7–S19.

    Google Scholar 

  38. Saridaki Z, Androulakis N, Vardakis N, et al. A triplet combination with irinotecan (CPT-11), oxaliplatin (LOHP), continuous infusion 5-fluorouracil and leucovorin (FOLFOXIRI) plus cetuximab as first-line treatment in KRAS wt, metastatic colorectal cancer: a pilot phase II trial. Br J Cancer. 2012;107:1932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fornaro L, Lonardi S, Masi G, et al. FOLFOXIRI in combination with panitumumab as first-line treatment in quadruple wild-type (KRAS, NRAS, HRAS, BRAF) metastatic colorectal cancer patients: a phase II trial by the Gruppo Oncologico Nord Ovest (GONO). Ann Oncol. 2013;24:2062–7.

    Article  CAS  PubMed  Google Scholar 

  40. Antoniotti C, Cremolini C, Loupakis F, et al. Modified FOLFOXIRI (mFOLFOXIRI) plus cetuximab (cet), followed by cet or bevacizumab (bev) maintenance, in RAS/BRAF wild-type (wt) metastatic colorectal cancer (mCRC): results of the phase II randomized MACBETH trial by GONO. J Clin Oncol. 2016;34:abstr 3543.

    Google Scholar 

  41. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hauschild A, Grob J-J, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed  Google Scholar 

  43. Kopetz S, Desai J, Chan E, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33:4032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Falchook GS, Lewis KD, Infante JR, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez-Roca CA, Delord J, Robert C, et al. Encorafenib (LGX818), an oral BRAF inhibitor, in patients (pts) with BRAF V600E metastatic colorectal cancer (mCRC) : results of dose expansion in an open-label, phase 1 study. Ann Oncol. 2014;25(suppl_4):iv182–3.

    Article  Google Scholar 

  46. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.

    Article  CAS  PubMed  Google Scholar 

  47. Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2:227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–5.

    Article  CAS  PubMed  Google Scholar 

  50. Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–51.

    Article  CAS  PubMed  Google Scholar 

  51. Corcoran RB, Atreya CE, Falchook GS, et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600–mutant colorectal cancer. J Clin Oncol. 2015;33:4023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple Nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373:726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong D, Morris V, El Osta B, et al. Phase Ib study of vemurafenib in combination with irinotecan and cetuximab in patients with BRAF-mutated metastatic colorectal cancer and advanced cancers. J Clin Oncol. 2015;33:abstr 3511.

    Article  Google Scholar 

  54. Ahronian LG, Sennott EM, Allen EMV, et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 2015;5:358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Corcoran RB, André T, Yoshino T, et al. Efficacy and circulating tumor DNA (ctDNA) analysis of the BRAF inhibitor dabrafenib (D), MEK inhibitor trametinib (T), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E–mutated (BRAFm) metastatic colorectal cancer (mCRC). Ann Oncol. 2016;27(suppl_6):abstract 455O. Combination of BRAF inhibitor with MEK inhibitor and anti-EGFR monoclonal antibody is clinically active, demonstrating that optimal MAPK pathway inhibition may be a seductive strategy for BRAF-mutated colorectal cancer

    Article  Google Scholar 

  56. Mao M, Tian F, Mariadason JM, et al. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents. Clin Cancer Res. 2013;19:657–67.

    Article  CAS  PubMed  Google Scholar 

  57. Tabernero J, Geel RV, Guren TK, et al. Phase 2 results: encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). J Clin Oncol. 2016;34

  58. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934–4.

  59. Capper D, Voigt A, Bozukova G, Ahadova A, Kickingereder P, von Deimling A, von Knebel DM, Kloor M. BRAF V600E-specific immunohistochemistry for the exclusion of lynch syndrome in MSI-H colorectal cancer: BRAF V600E immunohistochemistry in MSI-H colorectal cancer. Int J Cancer. 2013;133:1624–30.

    Article  CAS  PubMed  Google Scholar 

  60. Loughrey MB, Waring PM, Tan A, Trivett M, Kovalenko S, Beshay V, Young M-A, McArthur G, Boussioutas A, Dobrovic A. Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Familial Cancer. 2007;6:301–10.

    Article  CAS  PubMed  Google Scholar 

  61. Le DT, Uram JN, Wang H, et al. Programmed death-1 blockade in mismatch repair deficient colorectal cancer. J Clin Oncol. 2016;34:1abstr 103.

    Google Scholar 

  62. •• Overman MJ, Kopetz S, Lonardi S, et al. Nivolumab ± ipilimumab treatment (Tx) efficacy, safety, and biomarkers in patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): results from the CheckMate-142 study. Ann Oncol. 2016;27(supplement 6):abstract 479P. MMR deficiency predicts efficacy of immune checkpoint inhibition in colorectal and non-colorectal carcinomas regardless of BRAFV600E mutation

  63. Yaeger R, Cercek A, O’Reilly EM, et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res. 2015;21:1313–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry André MD.

Ethics declarations

Conflict of Interest

Romain Cohen declares that he has no conflict of interest.

Pascale Cervera declares that he has no conflict of interest.

Magali Svrcek declares that she has no conflict of interest.

Anna Pellat declares that she has no conflict of interest.

Chantal Dreyer declares that she has no conflict of interest.

Aimery de Gramont has received compensation from Roche for service as a consultant and non-financial research support from Sanofi.

Thierry André has received compensation from Roche and Amgen for service as a consultant, as well as honoraria from Baxter, Bayer, Bristol-Myers Squibb, Lilly, MSD, Merck Serono, Novartis, Sanofi, and Servier.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lower Gastrointestinal Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, R., Cervera, P., Svrcek, M. et al. BRAF-Mutated Colorectal Cancer: What Is the Optimal Strategy for Treatment?. Curr. Treat. Options in Oncol. 18, 9 (2017). https://doi.org/10.1007/s11864-017-0453-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0453-5

Keywords

Navigation