Skip to main content

Advertisement

Log in

The Growing Role of CDK4/6 Inhibitors in Treating Hormone Receptor-Positive Advanced Breast Cancer

  • Breast Cancer (ML Telli, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Single-agent endocrine therapy has been the standard therapeutic choice for the management of hormone receptor (HR)-positive, Her2-negative advanced breast cancer (ABC) for decades. However, the rapidly accumulating data regarding the biological role and safety of CDK4/6 inhibitors and the first-in-class approval of palbociclib have made these novel agents an essential component of treatment for HR-positive ABC. In the frontline setting, palbociclib in combination with endocrine therapy showed an improvement in progression-free survival (PFS) by 10 months to nearly 25 months when compared with endocrine therapy alone and a clinical benefit rate (CBR = stable disease >24 weeks + partial response + complete response) of 85%. Furthermore, clinically meaningful improvements in PFS were seen in combination with fulvestrant for patients with prior endocrine therapy, including premenopausal women. While neutropenia is experienced by most patients, it is typically uncomplicated and palbociclib is otherwise well tolerated. Recent analysis also demonstrated improved quality of life and reassuring evidence of no compromise in benefit from subsequent therapies after progression on palbociclib. Along with palbociclib, the CDK4/6 inhibitors ribociclib and abemaciclib are being evaluated in a variety of settings (metastatic, neoadjuvant, and adjuvant), alone and in combination with endocrine therapy, chemotherapy, and targeted therapies. Future research is needed to address challenges regarding the potential competition of these agents as the preferred partner in endocrine-sensitive disease, their use as single agents or in combination in the endocrine-refractory setting, and the clinical and molecular criteria for use as an alternative to chemotherapy. Unfortunately, despite efforts to determine predictive biomarkers for response, RB1 expression and HR-positive disease have been the only clear predictors of therapeutic benefit. Once more mature data become available, we hope to confirm a significant impact on long-term survival. Meanwhile, given the multiple therapies patients with ABC will receive, prolonged PFS with a well-tolerated oral regimen is a clinically meaningful endpoint. Palbociclib’s impact on PFS, high CBR, and tolerability have made its use a preferred option for treating many HR-positive, Her2-negative ABC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Cancer facts and figures 2016. Am. Cancer Soc, Inc 2016.

  2. Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Nat. Cancer Inst. 2014;106(5).

  3. Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, et al. Endocrine therapy for hormone receptor–positive metastatic breast cancer: American Society of Clinical Oncology Guideline. J Clin. Oncol. 2016.

  4. Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H, et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem. 2005;48(7):2388–406.

    Article  CAS  PubMed  Google Scholar 

  5. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2012. http://seer.cancer.gov/csr/1975_2012/, based on November 2014 SEER data submission, posted to the SEER web site, 2015. Bethesda, MD: National Cancer Institute, 2015.

  6. Thomas A, Khan SA, Chrischilles EA, Schroeder MC. Initial surgery and survival in stage IV breast cancer in the United States, 1988-2011. JAMA surgery. 2016;151(5):424–31.

    Article  PubMed  Google Scholar 

  7. NCCN guidelines. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#breast, Accessed 9/21/2016.

  8. Wilcken N, Hornbuckle J, Ghersi D. Chemotherapy alone versus endocrine therapy alone for metastatic breast cancer. Cochrane Database Syst Rev. 2003;2:CD002747.

    Google Scholar 

  9. Altundag K, Ibrahim NK. Aromatase inhibitors in breast cancer: an overview. Oncologist. 2006;11(6):553–62.

    Article  CAS  PubMed  Google Scholar 

  10. Sledge GW, Neuberg D, Bernardo P, Ingle JN, Martino S, Rowinsky EK, et al. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2003;21(4):588–92.

    Article  Google Scholar 

  11. • Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y, et al. Everolimus plus exemestane for hormone-receptor–positive, human epidermal growth factor receptor-2–negative advanced breast cancer: overall survival results from BOLERO-2. Ann. Oncol. 2014. Trial showing second line combination therapy (targeted therapy + endocrine therapy) improves outcomes in metastatic breast cancer.

  12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  13. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  CAS  PubMed  Google Scholar 

  15. Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell. 2004;118(4):493–504.

    Article  CAS  PubMed  Google Scholar 

  16. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–72.

    Article  CAS  PubMed  Google Scholar 

  17. Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24(2):167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abedin ZR, Ma Z, Reddy EP. Increased angiogenesis in Cdk4(R24C/R24C):Apc(+/Min) intestinal tumors. Cell Cycle. 2010;9(12):2456–63.

    Article  CAS  PubMed  Google Scholar 

  19. • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. Comprehensive description of the molecular and gene expression classification of breast cancer

    Article  Google Scholar 

  20. Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(18):4215–24.

    Article  CAS  Google Scholar 

  21. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62(1):233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Altucci L, Addeo R, Cicatiello L, Germano D, Pacilio C, Battista T, et al. Estrogen induces early and timed activation of cyclin-dependent kinases 4, 5, and 6 and increases cyclin messenger ribonucleic acid expression in rat uterus. Endocrinology. 1997;138(3):978–84.

    CAS  PubMed  Google Scholar 

  23. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006;24(11):1770–83.

    Article  CAS  Google Scholar 

  24. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–43.

    Article  CAS  PubMed  Google Scholar 

  25. Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H, et al. ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 2011;1(4):338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  27. Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell. 2012;22(4):438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  29. Fornier MN, Rathkopf D, Shah M, Patil S, O'Reilly E, Tse AN, et al. Phase I dose-finding study of weekly docetaxel followed by flavopiridol for patients with advanced solid tumors. Clin Cancer Res. 2007;13(19):5841–6.

    Article  CAS  PubMed  Google Scholar 

  30. Le Tourneau C, Faivre S, Laurence V, Delbaldo C, Vera K, Girre V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer. 2010;46(18):3243–50.

    Article  CAS  PubMed  Google Scholar 

  31. Kortmansky J, Shah MA, Kaubisch A, Weyerbacher A, Yi S, Tong W, et al. Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with fluorouracil in patients with advanced solid tumors. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(9):1875–84.

    Article  CAS  Google Scholar 

  32. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs. 2014;32(5):825–37.

    Article  CAS  Google Scholar 

  34. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.

    CAS  PubMed  Google Scholar 

  35. Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res. 2014;20(14):3763–74.

    Article  CAS  PubMed  Google Scholar 

  36. Kim S, Loo A, Chopra R, Caponigro G, Huang A, Vora S, et al. Abstract PR02: LEE011: an orally bioavailable, selective small molecule inhibitor of CDK4/6– Reactivating Rb in cancer. Mol. Cancer Ther. 2013;12(11 Supplement):PR02-PR.

  37. O'Brien NA, Tomaso ED, Ayala R, Tong L, Issakhanian S, Linnartz R, et al. Abstract 4756: in vivo efficacy of combined targeting of CDK4/6, ER and PI3K signaling in ER+ breast cancer. Cancer Res. 2014;74(19 Supplement):4756.

    Article  Google Scholar 

  38. •• Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors. Cancer Discovery. 2016;6(7):740–53. Offers a description of the unique toxicity profile of abemaciclib. Also demonstrates its activity as monotherapy, its CNS penetration, and an indication of activity in HR+/Her2+ disease

    Article  CAS  PubMed  Google Scholar 

  39. Schwartz GK, LoRusso PM, Dickson MA, Randolph SS, Shaik MN, Wilner KD, et al. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (schedule 2/1). Br J Cancer. 2011;104(12):1862–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res. 2012;18(2):568–76.

    Article  CAS  PubMed  Google Scholar 

  41. DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ Advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21(5):995–1001.

    Article  CAS  PubMed  Google Scholar 

  42. •• Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.Important phase II trial of palbociclib that let to its first-in-class approval for the treamtent of HR-positive, Her2-negative ABC.

  43. • Finn RS, Crown JP, Ettl J, Schmidt M, Bondarenko IM, Lang I, et al. Efficacy and safety of palbociclib in combination with letrozole as first-line treatment of ER-positive, HER2-negative, advanced breast cancer: expanded analyses of subgroups from the randomized pivotal trial PALOMA-1/TRIO-18. Breast Cancer Res. 2016;18(1):67. Long term follow up of patients receiving palbociclib treatment demonstrating neutropenia and other toxicities a not cumulative with subsequent cycles

    Article  PubMed  PubMed Central  Google Scholar 

  44. Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.

    Article  CAS  PubMed  Google Scholar 

  45. •• Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol.17(4):425–439.Phase III data demonstrating benefit with palbociclib regardless of subgroup or biomarkers.

  46. •• Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, et al. Palbociclib in hormone-receptor–positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19.Phase III data that included pre-menopausal women and confirmed palbociclib’s tolerability and efficacy in combination with fulvestrant as second line therapy

    Article  CAS  PubMed  Google Scholar 

  47. • Harbeck N, Iyer S, Turner N, Cristofanilli M, Ro J, André F, et al. Quality of life with palbociclib plus fulvestrant in previously treated hormone receptor–positive, HER2-negative metastatic breast cancer: patient-reported outcomes from the PALOMA-3 trial. Ann. Oncol. 2016.Detailed data regarding the tolerability and quality of life of patients treated with palbociclib.

  48. FDA. Package insert.

  49. Patt DA, Mitra D, Harrell RK, Espirito JL, Perkins JJ, McRoy L, et al. Early treatment utilization of palbociclib for metastatic breast cancer (MBC) in a U.S. community oncology network. ASCO Meeting Abstracts. 2016;34(15_suppl):e18112.

    Google Scholar 

  50. •• Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, et al. A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clinical Cancer Research. 2016.Phase I study demonstrating the safety and activity of ribociclib.

  51. Munster PN, Hamilton EP, Estevez LG, De Boer RH, Mayer IA, Campone M, et al. Ph IB study of LEE011 and BYL719 in combination with letrozole in ER+, HER2- breast cancer. ASCO Meeting Abstracts. 2014;32(26_suppl):143.

    Google Scholar 

  52. Juric D, Munster PN, Campone M, Ismail-Khan R, Garcia-Estevez L, Hamilton EP, et al. Ribociclib (LEE011) and letrozole in estrogen receptor-positive (ER+), HER2-negative (HER2-) advanced breast cancer (aBC): phase Ib safety, preliminary efficacy and molecular analysis. ASCO Meeting Abstracts. 2016;34(15_suppl):568.

    Google Scholar 

  53. •• Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016.Phase III study confirming efficacy of ribociclib in improving PFS across prespecified subgroups.

  54. Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs. 2014;32(5):825–37.

    Article  CAS  Google Scholar 

  55. Dickler MN, Tolaney SM, Rugo HS, Cortes J, Dieras V, Patt DA, et al. MONARCH1: results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2- breast cancer, after chemotherapy for advanced disease. ASCO Meeting Abstracts. 2016;34(15_suppl):510.

    Google Scholar 

  56. Beeram M, Tolaney SM, Beck JT, Dickler MN, Conlin AK, Dees C, et al. A phase 1b study of abemaciclib, an inhibitor of CDK4 and CDK6, in combination with endocrine and HER2-targeted therapies for patients with metastatic breast cancer. Ann. Oncol. 2016;27(suppl 6).

  57. Hurvitz S, Abad MF, Rostorfer R, Chan D, Egle D, Huang C-S, et al. breast cancer, early stageInterim results from neoMONARCH: a neoadjuvant phase II study of abemaciclib in postmenopausal women with HR + /HER2- breast cancer (BC). Ann. Oncol. 2016;27(suppl 6).

  58. Peguero JA, O'Neil BH, Sohal D, Bauer TM, Subbiah V, Kelly K, et al. Genomic mutation profiling (GMP) and clinical outcome in patients (pts) treated with ribociclib (CDK4/6 inhibitor) in the Signature program. ASCO Meeting Abstracts. 2016;34(15_suppl):2528.

    Google Scholar 

  59. Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13(6):224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12(10):573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turner NC, Jiang Y, O'Leary B, Hrebien S, Cristofanilli M, Andre F, et al. Efficacy of palbociclib plus fulvestrant (P + F) in patients (pts) with metastatic breast cancer (MBC) and ESR1 mutations (mus) in circulating tumor DNA (ctDNA). ASCO Meeting Abstracts. 2016;34(15_suppl):512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Cristofanilli MD.

Ethics declarations

Conflict of Interest

Ami N. Shah declares that she has no conflict of interest. Massimo Cristofanilli has received compensation from Vortex Pharmaceutical for service on an advisory board, from Dompé and Agentive Healthcare for service as a consultant, and honoraria from Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.N., Cristofanilli, M. The Growing Role of CDK4/6 Inhibitors in Treating Hormone Receptor-Positive Advanced Breast Cancer. Curr. Treat. Options in Oncol. 18, 6 (2017). https://doi.org/10.1007/s11864-017-0443-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0443-7

Keywords

Navigation