Skip to main content

Advertisement

Log in

Controversies in the Therapy of Brain Metastases: Shifting Paradigms in an Era of Effective Systemic Therapy and Longer-Term Survivorship

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

With the development of therapies that improve extracranial disease control and increase long-term survival of patients with metastatic cancer, effective treatment of brain metastases while minimizing toxicities is becoming increasingly important. An expanding arsenal that includes surgical resection, whole brain radiation therapy, radiosurgery, and targeted systemic therapy provides multiple treatment options. However, significant controversies still exist surrounding appropriate use of each modality in various clinical scenarios and patient populations in the context of cancer care strategies that control systemic disease for increasingly longer periods of time. While whole brain radiotherapy alone is still a reasonable and standard option for patients with multiple metastases, several randomized trials have now revealed that survival is maintained in patients treated with radiosurgery or surgery alone, without upfront whole brain radiotherapy, for up to four brain metastases. Indeed, recent data even suggest that patients with up to 10 metastases can be treated with radiosurgery alone without a survival detriment. In an era of dramatic advances in targeted and immune therapies that control systemic disease and improve survival but may not penetrate the brain, more consideration should be given to brain metastasis-directed treatments that minimize long-term neurocognitive deficits, while keeping in mind that salvage brain therapies will likely be more frequently required. Less toxic therapies now also allow for concurrent delivery of systemic therapy with radiosurgery to brain metastases, such that treatment of both extracranial and intracranial disease can be expedited, and potential synergies between radiotherapy and agents with central nervous system penetration can be harnessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–72. doi:10.1200/JCO.2004.12.149.

    Article  PubMed  Google Scholar 

  2. Davis FG, Dolecek TA, McCarthy BJ, Villano JL. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro-Oncology. 2012;14(9):1171–7. doi:10.1093/neuonc/nos152.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94(10):2698–705.

    Article  PubMed  Google Scholar 

  4. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–54. doi:10.1007/s11912-011-0203-y.

    Article  PubMed  Google Scholar 

  5. Pitz MW, Desai A, Grossman SA, Blakeley JO. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neuro-Oncol. 2011;104(3):629–38. doi:10.1007/s11060-011-0564-y.

    Article  CAS  Google Scholar 

  6. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500. doi:10.1056/NEJM199002223220802.

    Article  CAS  PubMed  Google Scholar 

  7. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44. doi:10.1016/S1470-2045(09)70263-3.

    Article  PubMed  Google Scholar 

  8. Soffietti R, Kocher M, Abacioglu UM, Villa S, Fauchon F, Baumert BG, et al. A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol. 2013;31(1):65–72. doi:10.1200/JCO.2011.41.0639. This paper reports quality-of-life results for the EORTC 22952-26001 randomized trial evaluating the addition of WBRT to radiosurgery or surgery for brain metastases and suggests better quality of life with omission of WBRT.

    Article  PubMed  Google Scholar 

  9. Aly Z, Peereboom DM. Combination of radiotherapy and targeted agents in brain metastasis: an update. Curr Treat Options Neurol. 2016;18(7):32. doi:10.1007/s11940-016-0416-3.

    Article  PubMed  Google Scholar 

  10. Johung KL, Yeh N, Desai NB, Williams TM, Lautenschlaeger T, Arvold ND, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol. 2016;34(2):123–9. doi:10.1200/JCO.2015.62.0138. This multi-institutional study demonstrates that long-term survival is possible in patients with brain metastases from ALK-rearranged NSCLC treated with brain radiotherapy and TKIs.

    Article  CAS  PubMed  Google Scholar 

  11. Shen CJ, Kummerlowe MN, Redmond KJ, Rigamonti D, Lim MK, Kleinberg LR. Stereotactic radiosurgery: treatment of brain metastasis without interruption of systemic therapy. Int J Radiat Oncol Biol Phys. 2016;95(2):735–42. doi:10.1016/j.ijrobp.2016.01.054. This single-institution study suggests that concurrent treatment with brain SRS and systemic therapy is associated with minimal neurologic and hematologic toxicity and is safe for most patients.

    Article  PubMed  Google Scholar 

  12. Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91.

    Article  CAS  PubMed  Google Scholar 

  13. Brown PD, Asher AL, Ballman KV, Farace E, Cerhan JH, Anderson SK, et al. NCCTG N0574 (Alliance): a phase III randomized trial of whole brain radiation therapy (WBRT) in addition to radiosurgery (SRS) in patients with 1 to 3 brain metastases. J Clin Oncol. 2015;33 (suppl; abstr LBA4). This randomized, phase III trial (in abstract form) represents one of four large studies evaluating the role of WBRT added to SRS for 1–3 brain metastases and focuses on cognitive function as a primary endpoint.

  14. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29(2):134–41. doi:10.1200/JCO.2010.30.1655.

    Article  PubMed  Google Scholar 

  15. Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15(4):387–95. doi:10.1016/S1470-2045(14)70061-0. This multi-institutional prospective study suggests that treatment with SRS alone may be an appropriate approach for patients with multiple brain metastases, as outcomes were similar for patients with 5–10 brain metastases versus 4 or fewer metastases.

    Article  PubMed  Google Scholar 

  16. Yamanaka K, Iwai Y, Yasui T, Nakajima H, Komiyama M, Nishikawa M, et al. Gamma knife radiosurgery for metastatic brain tumor: the usefulness of repeated gamma knife radiosurgery for recurrent cases. Stereotact Funct Neurosurg. 1999;72(Suppl 1):73–80.

    Article  PubMed  Google Scholar 

  17. Chen JC, Petrovich Z, Giannotta SL, Yu C, Apuzzo ML. Radiosurgical salvage therapy for patients presenting with recurrence of metastatic disease to the brain. Neurosurgery. 2000;46(4):860–6. discussion 866-7.

    CAS  PubMed  Google Scholar 

  18. Kwon KY, Kong DS, Lee JI, Nam DH, Park K, Kim JH. Outcome of repeated radiosurgery for recurrent metastatic brain tumors. Clin Neurol Neurosurg. 2007;109(2):132–7.

    Article  PubMed  Google Scholar 

  19. Shultz DB, Modlin LA, Jayachandran P, Von Eyben R, Gibbs IC, Choi CY, et al. Repeat courses of stereotactic radiosurgery (SRS), deferring whole-brain irradiation, for new brain metastases after initial SRS. Int J Radiat Oncol Biol Phys. 2015;92(5):993–9. doi:10.1016/j.ijrobp.2015.04.036. References 19 and 20 suggest that repeated course of SRS for new brain metastases following initial SRS is a safe and effective approach.

    Article  PubMed  Google Scholar 

  20. Shen CJ, Rigamonti D, Redmond KJ, Kummerlowe MN, Lim M, Kleinberg LR. The strategy of repeat stereotactic radiosurgery without whole brain radiation treatment for new brain metastases: outcomes and implications for follow-up monitoring. Pract Radiat Oncol. 2016. doi:10.1016/j.prro.2016.04.004. References 19 and 20 suggest that repeated course of SRS for new brain metastases following initial SRS is a safe and effective approach.

  21. Holt DE, Gill BS, Clump DA, Leeman JE, Burton SA, Amankulor NM, et al. Tumor bed radiosurgery following resection and prior stereotactic radiosurgery for locally persistent brain metastasis. Front Oncol. 2015;5:84. doi:10.3389/fonc.2015.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borgelt B, Gelber R, Kramer S, Brady LW, Chang CH, Davis LW, et al. The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1980;6(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gondi V, Hermann BP, Mehta MP, Tome WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2012;83(4):e487–93. doi:10.1016/j.ijrobp.2011.10.021.

    Article  PubMed  Google Scholar 

  24. Shibamoto Y, Baba F, Oda K, Hayashi S, Kokubo M, Ishihara S, et al. Incidence of brain atrophy and decline in mini-mental state examination score after whole-brain radiotherapy in patients with brain metastases: a prospective study. Int J Radiat Oncol Biol Phys. 2008;72(4):1168–73. doi:10.1016/j.ijrobp.2008.02.054.

    Article  PubMed  Google Scholar 

  25. Borgelt B, Gelber R, Larson M, Hendrickson F, Griffin T, Roth R. Ultra-rapid high dose irradiation schedules for the palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1981;7(12):1633–8.

    Article  CAS  PubMed  Google Scholar 

  26. Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet. 2004;363(9422):1665–72. doi:10.1016/S0140-6736(04)16250-8.

    Article  PubMed  Google Scholar 

  27. DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989;39(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  28. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys. 1995;31(4):983–98.

    Article  CAS  PubMed  Google Scholar 

  29. Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007;68(5):1388–95.

    Article  PubMed  Google Scholar 

  30. Li J, Bentzen SM, Renschler M, Mehta MP. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol. 2007;25(10):1260–6.

    Article  PubMed  Google Scholar 

  31. Regine WF, Huhn JL, Patchell RA, St Clair WH, Strottmann J, Meigooni A, et al. Risk of symptomatic brain tumor recurrence and neurologic deficit after radiosurgery alone in patients with newly diagnosed brain metastases: results and implications. Int J Radiat Oncol Biol Phys. 2002;52(2):333–8.

    Article  PubMed  Google Scholar 

  32. Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419–25. doi:10.1200/JCO.2011.38.0527.

    Article  PubMed  Google Scholar 

  33. Aoyama H, Tago M, Shirato H, Japanese Radiation Oncology Study Group 99-1 (JROSG 99-1) Investigators. Stereotactic radiosurgery with or without whole-brain radiotherapy for brain metastases: secondary analysis of the JROSG 99-1 randomized clinical trial. JAMA Oncol. 2015;1(4):457–64. doi:10.1001/jamaoncol.2015.1145. This secondary analysis of the JROSG 99-1 randomized trial suggests that certain subgroups of patients with favorable prognosis based on diagnosis-specific graded prognostic assessment (DS-GPA) may benefit from addition of WBRT to SRS.

    Article  PubMed  Google Scholar 

  34. Sahgal A, Aoyama H, Kocher M, Neupane B, Collette S, Tago M, et al. Phase 3 trials of stereotactic radiosurgery with or without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91(4):710–7. doi:10.1016/j.ijrobp.2014.10.024. This meta-analysis of phase 3 trials of SRS with or without WBRT suggests improved survival with SRS alone for patients age 50 or younger.

    Article  PubMed  Google Scholar 

  35. Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar A, Kondziolka D, Lunsford LD. The impact of whole-brain radiation therapy on the long-term control and morbidity of patients surviving more than one year after gamma knife radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys. 2005;62(4):1125–32.

    Article  PubMed  Google Scholar 

  36. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kleinberg L. Neurocognitive challenges in brain tumor survivors: is there anything we can do? J Clin Oncol. 2015;33(15):1633–6. doi:10.1200/JCO.2014.60.2805.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6. doi:10.1200/JCO.2014.57.2909. This phase II trial suggests an approach to minimize memory loss with WBRT through hippocampal sparing.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15(10):1429–37. doi:10.1093/neuonc/not114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rapp SR, Case LD, Peiffer A, Naughton MM, Chan MD, Stieber VW, et al. Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol. 2015;33(15):1653–9. doi:10.1200/JCO.2014.58.4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaw EG, Rosdhal R, D’Agostino Jr RB, Lovato J, Naughton MJ, Robbins ME, et al. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol. 2006;24(9):1415–20.

    Article  CAS  PubMed  Google Scholar 

  42. Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD. Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys. 2006;64(3):898–903.

    Article  PubMed  Google Scholar 

  43. Hunter GK, Suh JH, Reuther AM, Vogelbaum MA, Barnett GH, Angelov L, et al. Treatment of five or more brain metastases with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83(5):1394–8. doi:10.1016/j.ijrobp.2011.10.026.

    Article  PubMed  Google Scholar 

  44. Mohammadi AM, Recinos PF, Barnett GH, Weil RJ, Vogelbaum MA, Chao ST, et al. Role of gamma knife surgery in patients with 5 or more brain metastases. J Neurosurg. 2012;117(Suppl):5–12. doi:10.3171/2012.8.GKS12983.

    PubMed  Google Scholar 

  45. Gerosa M, Nicolato A, Foroni R, Zanotti B, Tomazzoli L, Miscusi M, et al. Gamma knife radiosurgery for brain metastases: a primary therapeutic option. J Neurosurg. 2002;97(5 Suppl):515–24. doi:10.3171/jns.2002.97.supplement.

    PubMed  Google Scholar 

  46. Muacevic A, Kreth FW, Horstmann GA, Schmid-Elsaesser R, Wowra B, Steiger HJ, et al. Surgery and radiotherapy compared with gamma knife radiosurgery in the treatment of solitary cerebral metastases of small diameter. J Neurosurg. 1999;91(1):35–43. doi:10.3171/jns.1999.91.1.0035.

    Article  CAS  PubMed  Google Scholar 

  47. O’Neill BP, Iturria NJ, Link MJ, Pollock BE, Ballman KV, O’Fallon JR. A comparison of surgical resection and stereotactic radiosurgery in the treatment of solitary brain metastases. Int J Radiat Oncol Biol Phys. 2003;55(5):1169–76.

    Article  PubMed  Google Scholar 

  48. Ahluwalia MS, Vogelbaum MV, Chao ST, Mehta MM. Brain metastasis and treatment. F1000Prime Rep. 2014;6:114–114. eCollection 2014. doi: 10.12703/P6-114.

  49. Kalkanis SN, Kondziolka D, Gaspar LE, Burri SH, Asher AL, Cobbs CS, et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):33–43. doi:10.1007/s11060-009-0061-8.

    Article  Google Scholar 

  50. Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.

    Article  CAS  PubMed  Google Scholar 

  51. Brennan C, Yang TJ, Hilden P, Zhang Z, Chan K, Yamada Y, et al. A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int J Radiat Oncol Biol Phys. 2014;88(1):130–6. doi:10.1016/j.ijrobp.2013.09.051. This is the first prospective study of SRS boost of resected brain metastases and demonstrates excellent local control and maintained survival compared to historical standards.

    Article  PubMed  Google Scholar 

  52. Hwang SW, Abozed MM, Hale A, Eisenberg RL, Dvorak T, Yao K, et al. Adjuvant gamma knife radiosurgery following surgical resection of brain metastases: a 9-year retrospective cohort study. J Neuro-Oncol. 2010;98(1):77–82. doi:10.1007/s11060-009-0051-x.

    Article  Google Scholar 

  53. Jensen CA, Chan MD, McCoy TP, Bourland JD, deGuzman AF, Ellis TL, et al. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis. J Neurosurg. 2011;114(6):1585–91. doi:10.3171/2010.11.JNS10939.

    Article  PubMed  Google Scholar 

  54. Prabhu R, Shu HK, Hadjipanayis C, Dhabaan A, Hall W, Raore B, et al. Current dosing paradigm for stereotactic radiosurgery alone after surgical resection of brain metastases needs to be optimized for improved local control. Int J Radiat Oncol Biol Phys. 2012;83(1):e61–6. doi:10.1016/j.ijrobp.2011.12.017.

    Article  PubMed  Google Scholar 

  55. Minniti G, Esposito V, Clarke E, Scaringi C, Lanzetta G, Salvati M, et al. Multidose stereotactic radiosurgery (9 Gy x 3) of the postoperative resection cavity for treatment of large brain metastases. Int J Radiat Oncol Biol Phys. 2013;86(4):623–9. doi:10.1016/j.ijrobp.2013.03.037.

    Article  PubMed  Google Scholar 

  56. Atalar B, Modlin LA, Choi CY, Adler JR, Gibbs IC, Chang SD, et al. Risk of leptomeningeal disease in patients treated with stereotactic radiosurgery targeting the postoperative resection cavity for brain metastases. Int J Radiat Oncol Biol Phys. 2013;87(4):713–8. doi:10.1016/j.ijrobp.2013.07.034. References 56 and 57 represent a large, single-institution experience with SRS to the post-operative resection cavity and suggest higher risk of leptomeningeal disease with breast cancer histology, as well as improved local control with a 2-mm SRS margin around the resection cavity.

    Article  PubMed  Google Scholar 

  57. Choi CY, Chang SD, Gibbs IC, Adler JR, Harsh IV GR, Lieberson RE, et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys. 2012;84(2):336–42. doi:10.1016/j.ijrobp.2011.12.009. References 56 and 57 represent a large, single-institution experience with SRS to the post-operative resection cavity and suggest higher risk of leptomeningeal disease with breast cancer histology, as well as improved local control with a 2-mm SRS margin around the resection cavity.

    Article  PubMed  Google Scholar 

  58. Ojerholm E, Lee JY, Thawani JP, Miller D, O’Rourke DM, Dorsey JF, et al. Stereotactic radiosurgery to the resection bed for intracranial metastases and risk of leptomeningeal carcinomatosis. J Neurosurg. 2014;121(Suppl):75–83. doi:10.3171/2014.6.GKS14708.

    PubMed  Google Scholar 

  59. Tsao MN, Rades D, Wirth A, Lo SS, Danielson BL, Gaspar LE, et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2012;2(3):210–25. doi:10.1016/j.prro.2011.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gaspar LE, Mehta MP, Patchell RA, Burri SH, Robinson PD, Morris RE, et al. The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):17–32. doi:10.1007/s11060-009-0060-9.

    Article  Google Scholar 

  61. Ahmed Z, Balagamwala E, Murphy E, Angelov L, Suh J, Lo S, et al. Postoperative stereotactic radiosurgery for resected brain metastasis. CNS Oncol. 2014;3(3):199–207. doi:10.2217/cns.14.18.

    Article  CAS  PubMed  Google Scholar 

  62. Roberge D, Parney I, Brown PD. Radiosurgery to the postoperative surgical cavity: who needs evidence? Int J Radiat Oncol Biol Phys. 2012;83(2):486–93. doi:10.1016/j.ijrobp.2011.09.032.

    Article  PubMed  Google Scholar 

  63. Ammirati M, Cobbs CS, Linskey ME, Paleologos NA, Ryken TC, Burri SH, et al. The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):85–96. doi:10.1007/s11060-009-0055-6.

    Article  Google Scholar 

  64. Sundaresan N, Sachdev VP, DiGiacinto GV, Hughes JE. Reoperation for brain metastases. J Clin Oncol. 1988;6(10):1625–9.

    CAS  PubMed  Google Scholar 

  65. Truong MT, St Clair EG, Donahue BR, Rush SC, Miller DC, Formenti SC, et al. Results of surgical resection for progression of brain metastases previously treated by gamma knife radiosurgery. Neurosurgery. 2006;59(1):86–97. doi:10.1227/01.NEU.0000219858.80351.38. discussion 86-97.

    Article  PubMed  Google Scholar 

  66. Vecil GG, Suki D, Maldaun MV, Lang FF, Sawaya R. Resection of brain metastases previously treated with stereotactic radiosurgery. J Neurosurg. 2005;102(2):209–15. doi:10.3171/jns.2005.102.2.0209.

    Article  PubMed  Google Scholar 

  67. Bindal RK, Sawaya R, Leavens ME, Hess KR, Taylor SH. Reoperation for recurrent metastatic brain tumors. J Neurosurg. 1995;83(4):600–4. doi:10.3171/jns.1995.83.4.0600.

    Article  CAS  PubMed  Google Scholar 

  68. Sadikov E, Bezjak A, Yi QL, Wells W, Dawson L, Millar BA, et al. Value of whole brain re-irradiation for brain metastases—single centre experience. Clin Oncol (R Coll Radiol). 2007;19(7):532–8.

    Article  CAS  Google Scholar 

  69. Son CH, Jimenez R, Niemierko A, Loeffler JS, KS O, Shih HA. Outcomes after whole brain reirradiation in patients with brain metastases. Int J Radiat Oncol Biol Phys. 2012;82(2):e167–72. doi:10.1016/j.ijrobp.2011.03.020.

    Article  PubMed  Google Scholar 

  70. Wong WW, Schild SE, Sawyer TE, Shaw EG. Analysis of outcome in patients reirradiated for brain metastases. Int J Radiat Oncol Biol Phys. 1996;34(3):585–90.

    Article  CAS  PubMed  Google Scholar 

  71. Caballero JA, Sneed PK, Lamborn KR, Ma L, Denduluri S, Nakamura JL, et al. Prognostic factors for survival in patients treated with stereotactic radiosurgery for recurrent brain metastases after prior whole brain radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(1):303–9. doi:10.1016/j.ijrobp.2011.06.1987.

    Article  PubMed  Google Scholar 

  72. Chao ST, Barnett GH, Vogelbaum MA, Angelov L, Weil RJ, Neyman G, et al. Salvage stereotactic radiosurgery effectively treats recurrences from whole-brain radiation therapy. Cancer. 2008;113(8):2198–204. doi:10.1002/cncr.23821.

    Article  PubMed  Google Scholar 

  73. Kurtz G, Zadeh G, Gingras-Hill G, Millar BA, Laperriere NJ, Bernstein M, et al. Salvage radiosurgery for brain metastases: prognostic factors to consider in patient selection. Int J Radiat Oncol Biol Phys. 2014;88(1):137–42. doi:10.1016/j.ijrobp.2013.10.003.

    Article  PubMed  Google Scholar 

  74. Lucas Jr JT, Colmer IV HG, White L, Fitzgerald N, Isom S, Bourland JD, et al. Competing risk analysis of neurologic vs. non-neurologic death in patients undergoing radiosurgical salvage following whole brain radiotherapy failure (WBRT): who actually dies of their brain metastases? Int J Radiat Oncol Biol Phys. 2015;92(5):1008–15. doi:10.1016/j.ijrobp.2015.04.032. This study provides a nomogram to estimate risk of neurologic death following salvage SRS for patients who have failed prior WBRT for brain metastases.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374(9701):1639–51. doi:10.1016/S0140-6736(09)61299-X.

    Article  CAS  PubMed  Google Scholar 

  76. Antonadou D, Paraskevaidis M, Sarris G, Coliarakis N, Economou I, Karageorgis P, et al. Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J Clin Oncol. 2002;20(17):3644–50.

    Article  CAS  PubMed  Google Scholar 

  77. Ball DL, Matthews JP. Prophylactic cranial irradiation: more questions than answers. Semin Radiat Oncol. 1995;5(1):61–8. doi:10.1054/SRAO00500061.

    Article  PubMed  Google Scholar 

  78. Cao KI, Lebas N, Gerber S, Levy C, Le Scodan R, Bourgier C, et al. Phase II randomized study of whole-brain radiation therapy with or without concurrent temozolomide for brain metastases from breast cancer. Ann Oncol. 2015;26(1):89–94. doi:10.1093/annonc/mdu488.

    Article  CAS  PubMed  Google Scholar 

  79. Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of radiotherapy and chemotherapy. J Neurol. 1998;245(11):695–708.

    Article  CAS  PubMed  Google Scholar 

  80. Verger E, Gil M, Yaya R, Vinolas N, Villa S, Pujol T, et al. Temozolomide and concomitant whole brain radiotherapy in patients with brain metastases: a phase II randomized trial. Int J Radiat Oncol Biol Phys. 2005;61(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  81. Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Investig. 2013;31(2):140–4. doi:10.3109/07357907.2012.762780.

    Article  CAS  Google Scholar 

  82. Kleinberg L, Grossman SA, Piantadosi S, Zeltzman M, Wharam M. The effects of sequential versus concurrent chemotherapy and radiotherapy on survival and toxicity in patients with newly diagnosed high-grade astrocytoma. Int J Radiat Oncol Biol Phys. 1999;44(3):535–43.

    Article  CAS  PubMed  Google Scholar 

  83. Welsh JW, Komaki R, Amini A, Munsell MF, Unger W, Allen PK, et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J Clin Oncol. 2013;31(7):895–902. doi:10.1200/JCO.2011.40.1174. This phase II trial demonstrates the safety of concurrent erlotinib with WBRT for patients with brain metastases from NSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gaudy-Marqueste C, Carron R, Delsanti C, Loundou A, Monestier S, Archier E, et al. On demand gamma-knife strategy can be safely combined with BRAF inhibitors for the treatment of melanoma brain metastases. Ann Oncol. 2014;25(10):2086–91. doi:10.1093/annonc/mdu266.

    Article  CAS  PubMed  Google Scholar 

  85. Ahmed KA, Freilich JM, Sloot S, Figura N, Gibney GT, Weber JS, et al. LINAC-based stereotactic radiosurgery to the brain with concurrent vemurafenib for melanoma metastases. J Neuro-Oncol. 2015;122(1):121–6. doi:10.1007/s11060-014-1685-x.

    Article  CAS  Google Scholar 

  86. Hecht M, Zimmer L, Loquai C, Weishaupt C, Gutzmer R, Schuster B, et al. Radiosensitization by BRAF inhibitor therapy-mechanism and frequency of toxicity in melanoma patients. Ann Oncol. 2015;26(6):1238–44. doi:10.1093/annonc/mdv139.

    Article  CAS  PubMed  Google Scholar 

  87. Satzger I, Degen A, Asper H, Kapp A, Hauschild A, Gutzmer R. Serious skin toxicity with the combination of BRAF inhibitors and radiotherapy. J Clin Oncol. 2013;31(13):e220–2. doi:10.1200/JCO.2012.44.4265.

    Article  PubMed  Google Scholar 

  88. Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015;16(13):e498–509. doi:10.1016/S1470-2045(15)00007-8.

    Article  PubMed  Google Scholar 

  89. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res. 2015;3(4):345–55. doi:10.1158/2326-6066.CIR-14-0196.

    Article  CAS  PubMed  Google Scholar 

  90. Kiess AP, Wolchok JD, Barker CA, Postow MA, Tabar V, Huse JT, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92(2):368–75. doi:10.1016/j.ijrobp.2015.01.004. References 90–92 suggest that combination immune therapy and brain SRS is well-tolerated and associated with favorable local control and survival in patients with melanoma brain metastases.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Knisely JP, Yu JB, Flanigan J, Sznol M, Kluger HM, Chiang VL. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117(2):227–33. doi:10.3171/2012.5.JNS111929. References 90–92 suggest that combination immune therapy and brain SRS is well-tolerated and associated with favorable local control and survival in patients with melanoma brain metastases.

    Article  PubMed  Google Scholar 

  92. Ahmed KA, Stallworth DG, Kim Y, Johnstone PA, Harrison LB, Caudell JJ, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 2016;27(3):434–41. doi:10.1093/annonc/mdv622. References 90–92 suggest that combination immune therapy and brain SRS is well-tolerated and associated with favorable local control and survival in patients with melanoma brain metastases.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence R. Kleinberg MD.

Ethics declarations

Conflict of Interest

Colette J. Shen declares that she has no conflict of interest.

Michael Lim has received research support through grants from Bristol-Myers Squibb, Agenus, Celldex Therapeutics, ImmunoCellular Therapeutics, Accuray, and Stryker, and has received compensation from Bristol-Myers Squibb, Stryker, Merck, and Regeneron for service as a consultant.

Lawrence R. Kleinberg declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C.J., Lim, M. & Kleinberg, L.R. Controversies in the Therapy of Brain Metastases: Shifting Paradigms in an Era of Effective Systemic Therapy and Longer-Term Survivorship. Curr. Treat. Options in Oncol. 17, 46 (2016). https://doi.org/10.1007/s11864-016-0423-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-016-0423-3

Keywords

Navigation