Skip to main content

Advertisement

Log in

Checkpoint Inhibitors in Head and Neck Cancer: Rationale, Clinical Activity, and Potential Biomarkers

  • Head and Neck Cancer (J-P Machiels, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The discovery and antibody targeting of immune regulatory molecules such as programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) pathways have led to clinically meaningful anti-cancer results. Rapid advances are being made in a variety of tumor types resulting in regulatory approvals in melanoma, non small cell lung cancer, and renal cell cancer. Numerous ongoing studies are expected to establish the worth of PD-1 pathway inhibitors in other tumor types as well as in combinations with approved agents. Head and neck squamous cell carcinoma (HNSCC) represents a complex group of malignancies characterized by profound immunosuppression and is an excellent candidate for investigation in this exciting field. However, given the fact that a subset of patients will likely benefit, it is critical to focus on biomarker development for appropriate patient selection and facilitation of trial design. As immunotherapy is settling in cancer treatment, immune checkpoint inhibitors are emerging as one of the most promising agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coley WB, The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res. 1991;3–11.

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012;23 Suppl 8:viii6-9.

  4. Atkins MB, Larkin J. Immunotherapy combined or sequenced with targeted therapy in the treatment of solid tumors: current perspectives. J Natl Cancer Inst. 2016;108. Excellent review on cancer immunotherapy.

  5. Allen C, Duffy S, Teknos T, Islam M, Chen Z, Albert PS, et al. Nuclear factor-kappaB-related serum factors as longitudinal biomarkers of response and survival in advanced oropharyngeal carcinoma. Clin Cancer Res. 2007;13:3182–90.

    Article  CAS  PubMed  Google Scholar 

  6. Kuss I, Hathaway B, Ferris RL, Gooding W, Whiteside TL. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10:3755–62.

    Article  CAS  PubMed  Google Scholar 

  7. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res. 2006;12:3890–5.

    Article  CAS  PubMed  Google Scholar 

  8. Weinberger PM, Yu Z, Haffty BG, Kowalski D, Harigopal M, Brandsma J, et al. Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favorable prognosis. J Clin Oncol. 2006;24:736–47.

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson HC, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res. 2013;19:1858–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bauman JE, Ferris RL. Integrating novel therapeutic monoclonal antibodies into the management of head and neck cancer. Cancer. 2014;120:624–32.

    Article  CAS  PubMed  Google Scholar 

  11. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  13. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6:715–27.

    Article  CAS  PubMed  Google Scholar 

  14. Wojtowicz ME, Dunn BK, Umar A. Immunologic approaches to cancer prevention—current status, challenges, and future perspectives. Semin Oncol. 2016;43:161–72.

    Article  CAS  PubMed  Google Scholar 

  15. Dolan DE, Gupta S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014;21:231–7.

    PubMed  Google Scholar 

  16. Philips GK, Atkins M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol. 2015;27:39–46.

    Article  CAS  PubMed  Google Scholar 

  17. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73:128–38.

    Article  CAS  PubMed  Google Scholar 

  18. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174:561–9.

    Article  CAS  PubMed  Google Scholar 

  19. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL. The frequency and suppressor function of CD4 + CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:6301–11.

    Article  CAS  PubMed  Google Scholar 

  20. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. BB, Seiwert TY, Weiss J. et al., A phase Ib study of MK-3475 in patients with human papillomavirus (HPV)-associated and non-HPV–associated head and neck (H/N) cancer. J Clin Oncol. 2014; 32: [suppl; abstr 6011] (2014). Evaluation of pembrolizumab in HPV(+) as opposed to HPV (−) patients in HNSCC.

  23. G.S. Seiwert TY HR, Mehra R, Tahara M, Berger R, Lee SH, Burtness B, Le DT, Heath K, Blum A, Dolled-Filhart M, Emancipator K, Pathiraja K, Cheng JD, Chow LQ. Antitumor activity and safety of pembrolizumab in patients (pts) with advanced squamous cell carcinoma of the head and neck (SCCHN): preliminary results from KEYNOTE-012 expansion cohort. J Clin Oncol 2015;33 (suppl; abstr LBA6008) (2015). Phase I study of Pembrolizumab in HNSCC.

  24. BM, Fury M, Ou SH, Balmanoukian A, Hansen A, Massarelli E, Blake-Haskins A, Li X, Rebelatto M, Steele K, Robbins PB, Vasselli J, Sega NH, Clinical activity and safety of MEDI4736, an anti-PD-L1 antibody, In Head and neck cancer. ESMO Meeting 2014, Poster # 988PD [Abstract ID 5656] (2014). Phase I study of Durvalumab in HNSCC.

  25. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology. 2011;132:315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107:4275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73:3591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. TF, Papadopoulos K, Hamid O, Xiao F, Steele KE, Rebelatto MC, Robbins PB, Karakunnel JJ, Lai DW, Mahipal A, A Phase I study to evaluate the safety and antitumor activity of durvalumab (MEDI4736) in combination with tremelimumab in patients with advanced solid tumors. Journal for ImmunoTher Cancer. 2015; 3(Suppl 2):P165.

  30. Shukuya T, Carbone DP. Predictive markers for the efficacy of anti-PD-1/PD-L1 antibodies in lung cancer. J Thorac Oncol. 2016.

  31. Park B, Yee C, Lee KM. The effect of radiation on the immune response to cancers. Int J Mol Sci. 2014;15:927–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124:687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2:831–8.

    Article  CAS  PubMed  Google Scholar 

  34. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. OS, Fury M, BM, Balmanoukian A, Hansen A, Massarelli E, Blake-Haskins A, Li X, Rebelatto M, Steele K, Robbins PB, Vasselli J, Sega NH, Clinical activity and safety of MEDI4736, an anti-PD-L1 antibody, In Head and neck cancer. ESMO Meeting 2014;Poster # 988PD [Abstract ID 5656].

  36. Vassilakopoulou M, Avgeris M, Velcheti V, Kotoula V, Rampias T, Chatzopoulos K, et al. Evaluation of PD-L1 expression and associated tumor-infiltrating lymphocytes in laryngeal squamous cell carcinoma. Clin Cancer Res. 2016;22:704–13. Evaluation of PD-L1 expression with a subjective quantitative method.

    Article  CAS  PubMed  Google Scholar 

  37. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62.

    Article  CAS  PubMed  Google Scholar 

  41. McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, Rehman J, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2016;2:46–54.

    Article  PubMed  Google Scholar 

  42. ZZ, Saloura V, Koeppen H, Keck MK, Khattri A, Boe M, Hegde PS, Xiao Y, Nakamura Y, Vokesm EE, De Souza JA, Villaflor VM, Kline J, Gajewski T, Lingen MW, Kowanetz M, Seiwert TY, Correlation of T-cell inflamed phenotype with mesenchymal subtype, expression of PD-L1, and other immune checkpoints in head and neck cancer. J Clin Oncol 2014;32:5s, 2014 (suppl; abstr 6009).

  43. Juergens RA, Zukotynski KA, Singnurkar A, Snider DP, Valliant JF, Gulenchyn KY. Imaging biomarkers in immunotherapy. Biomark Cancer. 2016;8:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tavare R, McCracken MN, Zettlitz KA, Knowles SM, Salazar FB, Olafsen T, et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A. 2014;111:1108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tavare R, McCracken MN, Zettlitz KA, Salazar FB, Olafsen T, Witte ON, et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 cys-diabodies. J Nucl Med. 2015;56:1258–64.

    Article  CAS  PubMed  Google Scholar 

  46. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS ONE. 2014;9, e109866.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lin AY, Lin E. Programmed death 1 blockade, an Achilles heel for MMR-deficient tumors? J Hematol Oncol. 2015;8:124.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 2016;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Panagiota Economopoulou MD, PhD or Amanda Psyrri MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Head and Neck Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Economopoulou, P., Kotsantis, I. & Psyrri, A. Checkpoint Inhibitors in Head and Neck Cancer: Rationale, Clinical Activity, and Potential Biomarkers. Curr. Treat. Options in Oncol. 17, 40 (2016). https://doi.org/10.1007/s11864-016-0419-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-016-0419-z

Keywords

Navigation