Skip to main content

Advertisement

Log in

Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

High-grade gliomas remain incurable despite current therapies, which are plagued by high morbidity and mortality. Molecular categorization of glioma subtypes using mutations in isocitrate dehydrogenase 1/2 (IDH1/2), TP53, and ATRX; codeletion of chromosomes 1p and 19q; DNA methylation; and amplification of genes such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, alpha polypeptide provides a more accurate prognostication and biologic classification than classical histopathological diagnoses, and a number of molecular markers are being incorporated in the new World Health Organization classification of gliomas. However, despite the improved understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways, these observations have so far failed to result in the successful application of targeted therapies, as has occurred in other solid tumors. To date, the only targeted therapy for gliomas approved by the US Food and Drug Administration is bevacizumab, which targets vascular endothelial growth factor. EGFR remains a dominant molecular alteration in specific glioma subtypes and represents a potentially promising target, with drugs of multiple types targeting EGFR in development including vaccines, antibody drug conjugates, and chimeric antigen receptor (CAR) T cells, despite the prior failures of EGFR tyrosine kinase inhibitors. Immune therapies under investigation include checkpoint inhibitors, vaccines against tumor-associated antigens and tumor-specific antigens, pulsed dendritic cells, heat shock protein-tumor conjugates, and CAR T cells. Mutations in the IDH1/2 genes are central to gliomagenesis in a high proportion of grade II and III gliomas, and ongoing trials are examining vaccines against IDH1, small molecular inhibitors of IDH1 and IDH2, and metabolic components including NAD+ depletion to target IDH-mutated gliomas. The central role of DNA methylation in a subset of gliomas may be targetable, but better understanding of the relation between epigenetic alterations and resulting tumor biology appears necessary. Ultimately, given the prior failure of single-agent targeted therapy in high-grade gliomas, it appears that novel combinatorial therapy or targeted drugs with immunomodulatory or epigenetic approaches will likely be necessary to successfully combat these challenging tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATRX:

Alpha thalassemia/mental retardation syndrome X-linked

CDKN2A/B:

Cyclin-dependent kinase inhibitor 2A or 2B

CIC:

Capicua transcriptional repressor

DAXX:

Death domain-associated protein

Epha2:

Ephrin type-A receptor 2 precursor

FUBP1:

Far upstream element binding protein 1

H3F3A:

H3 histone, family 3A

IL-13Ra2:

Interleukin 13 receptor subunit alpha 2

MGMT:

0-6-methylguanine-DNA methyltransferase

MTOR:

Mechanistic target of rapamycin

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PARP:

Poly ADP ribose polymerase

PIK3CA:

Phosphatidylinositol-4,5-bisphosphonate 3-kinase, catalytic subunit alpha

PTEN:

Phosphatase and tensin homolog

RB1:

Retinoblastoma 1 gene

STAT3:

Signal transducer and activator of transcription 3

TERT:

Telomerase reverse transcriptase

TP53:

Tumor protein 53

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43. Recent phase III trial that demonstrated improvement in progression-free and overall survival in patients treated with tumor treated fields in addition to radiation and adjuvant temozolomide versus radiation and temozolomide alone.

    Article  PubMed  Google Scholar 

  3. Ostrom QT, Gittleman H, de Blank PM, et al. American Brain Tumor Association Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012. Neuro-Oncology. 2016;18 Suppl 1:i1–50.

    Article  PubMed  Google Scholar 

  4. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  5. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brat DJ, Verhaak RG, Aldape KD, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98. Comprehensive, multiplatform analysis dividing lower grade gliomas into three distinct molecular classes that were more concordant with IDH mutation, 1p19q loss, and TP53 alteration than with histology. These delineated groups more accurately predict clinical outcomes and help set the stage for molecular - based definition of these tumors in clinical trials and clinical practice.

    Article  CAS  PubMed  Google Scholar 

  7. Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ceccarelli M, Barthel FP, Malta TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550–63.

    Article  CAS  PubMed  Google Scholar 

  9. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  Google Scholar 

  10. Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cairncross G, Berkey B, Shaw E, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24(18):2707–14.

    Article  CAS  PubMed  Google Scholar 

  12. Cairncross JG, Wang M, Jenkins RB, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol. 2014;32(8):783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sturm D, Witt H, Hovestadt V, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37.

    Article  CAS  PubMed  Google Scholar 

  14. Batchelor TT, Mulholland P, Neyns B, et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 2013;31(26):3212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee EQ, Kuhn J, Lamborn KR, et al. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05–02. Neuro-Oncology. 2012;14(12):1511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328–35.

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.

    Article  CAS  PubMed  Google Scholar 

  19. Sandmann T, Bourgon R, Garcia J, et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol. 2015;33(25):2735–44.

    Article  CAS  PubMed  Google Scholar 

  20. Taal W, Oosterkamp HM, Walenkamp AM, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15(9):943–53.

    Article  CAS  PubMed  Google Scholar 

  21. Wick W, Brandes A, Gorlia T, et al. LB-05PHASE III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncology. 2015;17 suppl 5:v1.

    Article  Google Scholar 

  22. Swartz AM, Li QJ, Sampson JH. Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy. 2014;6(6):679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    Article  CAS  PubMed  Google Scholar 

  24. Haas-Kogan DA, Prados MD, Tihan T, et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst. 2005;97(12):880–7.

    Article  CAS  PubMed  Google Scholar 

  25. Reardon DA, Wen PY, Mellinghoff IK. Targeted molecular therapies against epidermal growth factor receptor: past experiences and challenges. Neuro-Oncology. 2014;16 Suppl 8:viii7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Prados MD, Byron SA, Tran NL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology. 2015;17(8):1051–63.

    Article  PubMed  Google Scholar 

  27. Reardon D, Desjardins A, Schuster J, et al. ReACT: long-term survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. Neuro-Oncoloogy. 2015;17 suppl 5:v109.

  28. Inman S. Rindopepimut misses OS endpoint in phase III glioblastoma trial. OncLive. 2016. http://www.onclive.com/web-exclusives/rindopepimut-misses-os-endpoint-in-phase-iii-glioblastoma-trial. Accessed June 10, 2016.

  29. Reilly EB, Phillips AC, Boghaert ER, et al. ABT-414, an antibody drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther. 2016;15(4):661–9.

  30. Gan H, Kumthekar P, Lassman A, et al. ABT-414 mono- or combination therapy with temozolomide (TMZ) rechallenge in patients with recurrent glioblastoma (GBM) and amplified epidermal growth factor receptor (EGFR): a phase I study. Neuro-Oncology. 2015;17 Suppl 5:v10.

  31. Sampson JH, Mitchell DA. Vaccination strategies for neuro-oncology. Neuro-Oncology. 2015;17 Suppl 7:vii15–25.

    Article  PubMed  Google Scholar 

  32. Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7.

    Article  CAS  PubMed  Google Scholar 

  33. Bregy A, Wong TM, Shah AH, Goldberg JM, Komotar RJ. Active immunotherapy using dendritic cells in the treatment of glioblastoma multiforme. Cancer Treat Rev. 2013;39(8):891–907.

    Article  CAS  PubMed  Google Scholar 

  34. Ampie L, Choy W, Lamano JB, Fakurnejad S, Bloch O, Parsa AT. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neuro-Oncol. 2015;123(3):441–8.

    Article  CAS  Google Scholar 

  35. Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro-Oncology. 2014;16(10):1304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnson LA, Scholler J, Ohkuri T, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015;7(275):275ra222.

    Article  Google Scholar 

  37. Tronnier M, Mitteldorf C. Treating advanced melanoma: current insights and opportunities. Cancer Manag Res. 2014;6:349–56.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wakimoto H, Tanaka S, Curry WT, et al. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res. 2014;20(11):2898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen R, Ravindra VM, Cohen AL, et al. Molecular features assisting in diagnosis, surgery, and treatment decision making in low-grade gliomas. Neurosurg Focus. 2015;38(3):E2.

    Article  PubMed  Google Scholar 

  40. Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell. 2015;28(6):773–84.

    Article  CAS  PubMed  Google Scholar 

  41. Duke Comprehensive Cancer Center, Duke University. Patients with IDH1 positive recurrent grade II glioma enrolled in a safety and immunogenicity study of tumor-specific peptide vaccine. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000. https://clinicaltrials.gov/ct2/show/NCT02193347. Accessed March 23, 2016.

  42. National Center for Tumor Diseases, Heidelberg. Targeting IDH1R132H in WHO Grade III-IV IDH1R132H-mutated gliomas by a peptide vaccine—a phase I safety, tolerability and immunogenicity multicenter trial (NOA-16). In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000. https://clinicaltrials.gov/ct2/show/NCT02454634. Accessed March 23, 2016.

  43. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Flavahan WA, Drier Y, Liau BB, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529(7584):110–4.

    Article  CAS  PubMed  Google Scholar 

  45. Selby GB, Upchurch C, Townsend J, Eyre HJ. A phase II evaluation of fazarabine in high-grade gliomas: a Southwest Oncology Group study. Cancer Chemother Pharmacol. 1994;34(2):179–80.

    Article  CAS  PubMed  Google Scholar 

  46. Rheinbay E, Louis DN, Bernstein BE, Suva ML. A tell-tail sign of chromatin: histone mutations drive pediatric glioblastoma. Cancer Cell. 2012;21(3):329–31.

    Article  CAS  PubMed  Google Scholar 

  47. Majuelos-Melguizo J, Rodriguez MI, Lopez-Jimenez L, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6(7):4790–803.

    Article  PubMed  Google Scholar 

  48. Gray GK, McFarland BC, Nozell SE, Benveniste EN. NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother. 2014;14(11):1293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wen PY, Chang SM, Lamborn KR, et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04–02. Neuro-Oncology. 2014;16(4):567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chinnaiyan P, Won M, Wen PY, et al. RTOG 0913: a phase 1 study of daily everolimus (RAD001) in combination with radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys. 2013;86(5):880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mrugala MM, Engelhard HH, Dinh Tran D, et al. Clinical practice experience with NovoTTF-100A system for glioblastoma: the Patient Registry Dataset (PRiDe). Semin Oncol. 2014;41 Suppl 6:S4–13.

    Article  PubMed  Google Scholar 

  52. Johnson BE, Mazor T, Hong C, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343(6167):189–93. Study of the clonal evolution of tumor recurrences in low-grade gliomas demonstrating that the sequential recurrences of a tumor may derive phylogenetically from different earlier evolutionary stages of the initial tumor and therefore contain divergent driver mutations that need to be treated differently. This study elucidates one of the great challenges of targeted therapies and may explain one of the reasons single-agent targeted therapies have failed to demonstrate efficacy to date in these tumors.

    Article  CAS  PubMed  Google Scholar 

  53. van Thuijl HF, Mazor T, Johnson BE, et al. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol. 2015;129(4):597–607.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Kristin Kraus, M.Sc., for editorial assistance in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Colman MD, PhD.

Ethics declarations

Conflict of Interest

Ricky Chen declares that he has no conflict of interest.

Adam L. Cohen declares that he has no conflict of interest.

Howard Colman is the site PI for clinical trials (institutional contract) conducted with Plexxikon and NewLink Genetics and has received compensation from Roche, Genentech, Upsher-Smith, Oxigene, CytRx, Novocure, and Omniox for service on advisory boards.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Cohen, A.L. & Colman, H. Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future. Curr. Treat. Options in Oncol. 17, 42 (2016). https://doi.org/10.1007/s11864-016-0418-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-016-0418-0

Keywords

Navigation