Skip to main content

Advertisement

Log in

Novel Treatment Strategies for Brain Metastases in Non-small-cell Lung Cancer

  • Lung Cancer (HA Wakelee, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Brain metastases are common in patients with non-small cell lung cancer (NSCLC), and due to associated poor prognosis, this field is an important area of need for the development of innovative medical therapies. Therapies including local approaches through surgical intervention and/or radiation and evolving systemic therapies have led to improvements in the treatment of brain metastases in patients with lung cancer. Strategies that consider applying advanced radiation techniques to minimize toxicity, intervening early with effective systemic therapies to spare radiation/surgery, testing radiosensitization combinations, and developing drug penetrant molecules have and will continue to define new practice patterns. We believe that in carefully considered asymptomatic patients, first-line systemic therapy may be considered before radiation therapy and small-molecule targeted therapy may provide an opportunity to defer radiation therapy for recurrence or progression of disease. The next several years in oncology drug development will see the reporting on of brain penetrant molecules in oncogene-defined non-small cell lung cancer. Ongoing studies will evaluate immunotherapies in patients with brain metastases with associated endpoints. We hope that continued drug development and carefully designed clinical trials may afford an opportunity to improve the lives of patients with brain metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Arrieta O, Villarreal-Garza C, Zamora J, et al. Long-term survival in patients with non-small cell lung cancer and synchronous brain metastasis teated with whole-brain radiotherapy and thoracic chemoradiation. Radiat Oncol. 2011;6(1):166. doi:10.1186/1748-717X-6-166.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang DB. Late survival of non-small cell lung cancer patients with brain metastases. Influence of treatment. CHEST J. 1992;101(5):1293. doi:10.1378/chest.101.5.1293.

    Article  CAS  Google Scholar 

  3. Gaspar LE, Scott C, Murray K, Curran W. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int J Radiat Oncol Biol Phys. 2000;47(4):1001–6.

    Article  CAS  PubMed  Google Scholar 

  4. Sperduto PW, Kased N, Roberge D, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419–25. doi:10.1200/JCO.2011.38.0527.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Karnofsky DA, Abelmann WH, Craver LF, Burchenal JH. The use of the nitrogen mustards in the palliative treatment of carcinoma. With particular reference to bronchogenic carcinoma. Cancer. 1948;1(4):634–56. doi:10.1002/1097-0142(194811)1:4<634::AID-CNCR2820010410>3.0.CO;2-L.

    Article  Google Scholar 

  6. CHAO JH, PHILLIPS R, NICKSON JJ. Roentgen-ray therapy of cerebral metastases. Cancer. 1954;7(4):682–9.

    Article  CAS  PubMed  Google Scholar 

  7. Borgelt B, Gelber R, Kramer S, et al. The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1980;6(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  8. DeAngelis LM, Posner JB. Neurologic complications of cancer. vol 73. Oxford University Press; 2008.

  9. Tsao MN, Lloyd N, Wong RKS, et al. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst Rev. 2012;4:CD003869. doi:10.1002/14651858.CD003869.pub3.

    PubMed  Google Scholar 

  10. Mulvenna PM, Nankivell MG, Barton R, et al. Whole brain radiotherapy for brain metastases from non-small lung cancer: quality of life (QoL) and overall survival (OS) results from the UK Medical Research Council QUARTZ randomised clinical trial (ISRCTN 3826061). ASCO Meet Abstr. 2015;33(15_suppl):8005. This is the only existing randomized clinical trial on WBRT versus supportive care, and an implication is that patients with baseline poor prognosis do poorly irrespective of radiotherapy intervention.

    Google Scholar 

  11. Meyers CA, Smith JA, Bezjak A, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol. 2004;22(1):157–65. doi:10.1200/JCO.2004.05.128.

    Article  CAS  PubMed  Google Scholar 

  12. Mehta MP, Shapiro WR, Phan SC, et al. Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys. 2009;73(4):1069–76. doi:10.1016/j.ijrobp.2008.05.068.

    Article  CAS  PubMed  Google Scholar 

  13. Mehta MP, Rodrigus P, Terhaard CHJ, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003;21(13):2529–36. doi:10.1200/JCO.2003.12.122.

    Article  CAS  PubMed  Google Scholar 

  14. Scott C, Suh J, Stea B, Nabid A, Hackman J. Improved survival, quality of life, and quality-adjusted survival in breast cancer patients treated with efaproxiral (Efaproxyn) plus whole-brain radiation therapy for brain metastases. Am J Clin Oncol. 2007;30(6):580–7. doi:10.1097/COC.0b013e3180653c0d.

    Article  CAS  PubMed  Google Scholar 

  15. Suh JH, Stea B, Nabid A, et al. Phase III study of efaproxiral as an adjunct to whole-brain radiation therapy for brain metastases. J Clin Oncol. 2006;24(1):106–14. doi:10.1200/JCO.2004.00.1768.

    Article  CAS  PubMed  Google Scholar 

  16. Mehta MP, Wang D, Wang F, et al. Veliparib in combination with whole brain radiation therapy in patients with brain metastases: results of a phase 1 study. J Neurooncol. 2015;122(2):409–17. doi:10.1007/s11060-015-1733-1.

    Article  CAS  PubMed  Google Scholar 

  17. Chabot P, Ryu J-S, Gorbunova V. Results of a randomized, global, multi-center study of whole-brain radiation therapy (WBRT) plus veliparib or placebo in patients (pts) with brain metastases (BM) from non-small cell lung cancer (NSCLC). In: J Clin Oncol 33, 2015 (Suppl; Abstr 2021).

  18. Tallet AV, Azria D, Barlesi F, et al. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7(1):77. doi:10.1186/1748-717X-7-77.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013;15(10):1429–37. doi:10.1093/neuonc/not114. RTOG 0614 showed that concomitant memantine (20mg/daily) with WBRT delayed time to cognitive decline, specifically with a decline in memory, executive function, and processing speed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6. doi:10.1200/JCO.2014.57.2909. A phase II trial investigating hippocampal avoidance-WBRT found a significant improvement in mean decline in delayed recall versus historical controls (7% vs 30%).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet (London, England). 2004;363(9422):1665–72. doi:10.1016/S0140-6736(04)16250-8.

    Article  Google Scholar 

  22. Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91. doi:10.1001/jama.295.21.2483.

    Article  CAS  PubMed  Google Scholar 

  23. Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29(2):134–41. doi:10.1200/JCO.2010.30.1655.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soffietti R, Kocher M, Abacioglu UM, et al. A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life. J Clin Oncol. 2013;31(1):65–72. doi:10.1200/JCO.2011.41.0639.

    Article  PubMed  Google Scholar 

  25. Brown PD, Asher AL, Ballman KV, Farace E, Cerhan JH, Anderson SK et al. NCCTG N0574 (Alliance): a phase III randomized trial of whole brain radiation therapy (WBRT) in addition to radiosurgery (SRS) in patients with 1 to 3 brain metastases. | 2015 ASCO Annual Meeting. http://meetinglibrary.asco.org/content/146056-156. Accessed November 4, 2015. More recent findings from the phase III NCCTG N0574 demonstrated that WBRT + SRS resulted in deterioration in cognitive function (91.7% for SRS + WBRT vs 63.5% for SRS alone) and worse overall survival (7.5 months vs 10.7 months) despite better intracranial tumor control (50.5% vs 84.9% at 12 months).

  26. Pitz MW, Desai A, Grossman SA, Blakeley JO. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol. 2011;104(3):629–38. doi:10.1007/s11060-011-0564-y. Between patients with two to four tumors or five to ten tumors, they found no difference in overall survival (10.8 months in each) or treatment-related adverse events (9% in each), suggesting that SRS is feasible in patients with up to ten brain metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lee T-H, Avraham HK, Jiang S, Avraham S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem. 2003;278(7):5277–84. doi:10.1074/jbc.M210063200.

    Article  CAS  PubMed  Google Scholar 

  29. Pishko GL, Muldoon LL, Pagel MA, Schwartz DL, Neuwelt EA. Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis. Fluids Barriers CNS. 2015;12:5. doi:10.1186/2045-8118-12-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larsson HBW, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med. 1990;16(1):117–31. doi:10.1002/mrm.1910160111.

    Article  CAS  PubMed  Google Scholar 

  31. Singh A, Haris M, Rathore D, et al. Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging. 2007;26(4):871–80. doi:10.1002/jmri.21080.

    Article  PubMed  Google Scholar 

  32. Zimmermann S, Dziadziuszko R, Peters S. Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases. Cancer Treat Rev. 2014;40(6):716–22. doi:10.1016/j.ctrv.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  33. Neuhaus T, Ko Y, Muller RP, et al. A phase III trial of topotecan and whole brain radiation therapy for patients with CNS-metastases due to lung cancer. Br J Cancer. 2009;100(2):291–7. doi:10.1038/sj.bjc.6604835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wagenius G, Brodin O, Nyman J. Radiotherapy vs. temozolomide in the treatment of patients with lung cancer and brain metastases: a nordic randomized phase II study. ASCO Meet Abstr. 2006;24(18_suppl):7136.

    Google Scholar 

  35. Antonadou D, Coliarakis N, Paraskevaidis M, et al. O-67 A multi-institutional trial comparing survival of patients with brain metastases from lung cancer treated with temozolomide plus radiotherapy versus to radiotherapy alone. Lung Cancer. 2003;41:S22–3. doi:10.1016/S0169-5002(03)91725-9.

    Article  Google Scholar 

  36. Verger E, Gil M, Yaya R, et al. Temozolomide and concomitant whole brain radiotherapy in patients with brain metastases: a phase II randomized trial. Int J Radiat Oncol Biol Phys. 2005;61(1):185–91. doi:10.1016/j.ijrobp.2004.04.061.

    Article  CAS  PubMed  Google Scholar 

  37. Chua D, Krzakowski M, Chouaid C, et al. Whole-brain radiation therapy plus concomitant temozolomide for the treatment of brain metastases from non-small-cell lung cancer: a randomized, open-label phase II study. Clin Lung Cancer. 2010;11(3):176–81. doi:10.3816/CLC.2010.n.022.

    Article  CAS  PubMed  Google Scholar 

  38. Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr KM, Peters S. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii27–39. doi:10.1093/annonc/mdu199.

    Article  PubMed  Google Scholar 

  39. Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan T, Ettinger DS. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J Clin Oncol. 1993;11(3):561–9.

    CAS  PubMed  Google Scholar 

  40. Kim D-Y, Lee K-W, Yun T, et al. Comparison of intrathecal chemotherapy for leptomeningeal carcinomatosis of a solid tumor: methotrexate alone versus methotrexate in combination with cytosine arabinoside and hydrocortisone. Jpn J Clin Oncol. 2003;33(12):608–12.

    Article  PubMed  Google Scholar 

  41. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. doi:10.1056/NEJMoa0909530.

    Article  CAS  PubMed  Google Scholar 

  42. Solomon BJ, Mok T, Kim D-W, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77. doi:10.1056/NEJMoa1408440.

    Article  PubMed  Google Scholar 

  43. Rangachari D, Yamaguchi N, VanderLaan PA, et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015;88(1):108–111. doi:10.1016/j.lungcan.2015.01.020.

  44. Eichler AF, Kahle KT, Wang DL, et al. EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol. 2010;12(11):1193–9. doi:10.1093/neuonc/noq076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee H-L, Chung T-S, Ting L-L, et al. EGFR mutations are associated with favorable intracranial response and progression-free survival following brain irradiation in non-small cell lung cancer patients with brain metastases. Radiat Oncol. 2012;7:181. doi:10.1186/1748-717X-7-181.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heon S, Yeap BY, Lindeman NI, et al. The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clin Cancer Res. 2012;18(16):4406–14. doi:10.1158/1078-0432.CCR-12-0357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park SJ, Kim HT, Lee DH, et al. Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer. 2012;77(3):556–60. doi:10.1016/j.lungcan.2012.05.092.

    Article  CAS  PubMed  Google Scholar 

  48. Jackman DM, Holmes AJ, Lindeman N, et al. Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J Clin Oncol. 2006;24(27):4517–20. doi:10.1200/JCO.2006.06.6126.

    Article  PubMed  Google Scholar 

  49. Clarke JL, Pao W, Wu N, Miller VA, Lassman AB. High dose weekly erlotinib achieves therapeutic concentrations in CSF and is effective in leptomeningeal metastases from epidermal growth factor receptor mutant lung cancer. J Neurooncol. 2010;99(2):283–6. doi:10.1007/s11060-010-0128-6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Deng Y, Feng W, Wu J, et al. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer. Mol Clin Oncol. 2014;2(1):116–20. doi:10.3892/mco.2013.190. Studies have reported a blood-brain barrier permeation rate of erlotinib to be around 2.8 to 5.1%.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Togashi Y, Masago K, Fukudo M, et al. Cerebrospinal fluid concentration of erlotinib and its active metabolite OSI-420 in patients with central nervous system metastases of non-small cell lung cancer. J Thorac Oncol. 2010;5(7):950–5. doi:10.1097/JTO.0b013e3181e2138b.

    Article  PubMed  Google Scholar 

  52. Togashi Y, Masago K, Masuda S, et al. Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol. 2012;70(3):399–405. doi:10.1007/s00280-012-1929-4.

    Article  CAS  PubMed  Google Scholar 

  53. Hoffknecht P, Tufman A, Wehler T, et al. Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. J Thorac Oncol. 2015;10(1):156–63. doi:10.1097/JTO.0000000000000380. The sequence of anti-EGFR tyrosine kinase inhibitors needs to be studied wth a brain metastasis endpoint.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nonagase Y, Okamoto K, Iwasa T, et al. Afatinib-refractory brain metastases from EGFR-mutant non-small-cell lung cancer successfully controlled with erlotinib: a case report. Anticancer Drugs. 2016;27(3):251–3. doi:10.1097/CAD.0000000000000317.

    Article  CAS  PubMed  Google Scholar 

  55. Grommes C, Oxnard GR, Kris MG, et al. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 2011;13(12):1364–9. doi:10.1093/neuonc/nor121.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jackman DM, Mach SL, Heng JC. Pulsed dosing of erlotinib for central nervous system (CNS) progression in EGFR-mutant non-small cell lung cancer (NSCLC). In: J Clin Oncol 31, 2013 (Suppl; Abstr 8116).

  57. Kawamura T, Hata A, Takeshita J, et al. High-dose erlotinib for refractory leptomeningeal metastases after failure of standard-dose EGFR-TKIs. Cancer Chemother Pharmacol. 2015;75(6):1261–6. doi:10.1007/s00280-015-2759-y. This study assessed the efficacy of high-dose erlotinib in patients who developed refractory leptomeningeal disease while on standard-dose TKIs and found an objective response in three out of ten (30 %), and an improvement in performance status and neurological symptoms in four out of twelve (33 %) and six out of twelve (50 %), respectively.

    Article  CAS  PubMed  Google Scholar 

  58. Jackman DM, Cioffredi LA, Jacobs L, et al. A phase I trial of high dose gefitinib for patients with leptomeningeal metastases from non-small cell lung cancer. Oncotarget. 2015;6(6):4527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yu HA, Sima CS, Reales D. A phase I study of twice weekly pulse dose and daily low dose erlotinib as initial treatment for patients (pts) with EGFR-mutant lung cancers. J Clin Oncol. 2015;33(15 Suppl.):Abstract 8017.

  60. Akimoto T, Hunter NR, Buchmiller L, Mason K, Ang KK, Milas L. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res. 1999;5(10):2884–90.

    CAS  PubMed  Google Scholar 

  61. Chinnaiyan P, Huang S, Vallabhaneni G, et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 2005;65(8):3328–35. doi:10.1158/0008-5472.CAN-04-3547.

    CAS  PubMed  Google Scholar 

  62. Sperduto PW, Wang M, Robins HI, et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320. Int J Radiat Oncol Biol Phys. 2013;85(5):1312–8. doi:10.1016/j.ijrobp.2012.11.042. Evaluation of efficacy demonstrated an overall response rate of 86 %, however was limited as it is a single arm study without a comparator in a population not selected for EGFR mutations. RTOG 0320 evaluated WBRT + SRS + erlotinib and found high toxicity with grade 3-5 toxicities at 49 % (as compared to 11 % for WBRT alone), and the study was closed early due to poor accrual.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim D-W, Yang JC-H, Cross D. Preclinical evidence and clinical cases of AZD9291 activity in EGFR-mutant non-small cell lung cancer (NSCLC) brain metastases (BM). Annals of Oncology. http://oncologypro.esmo.org/Meeting-Resources/ESMO-2014/Developmental-Therapeutics/Preclinical-evidence-and-clinical-cases-of-AZD9291-activity-in-EGFR-mutant-non-small-cell-lung-cancer-NSCLC-brain-metastases-BM. Published 2014. Accessed November 20, 2015.

  64. Nanjo S, Ebi H, Arai S. High efficacy of third generation EGFR inhibitor AZD9291 in a leptomeningeal carcinomatosis model with EGFR-mutant lung cancer cells. Oncotarget. December 2015. doi:10.18632/oncotarget.6758.

  65. Jiang T, Zhou C. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer. Transl Lung Cancer Res. 2014;3(6):370–2. doi:10.3978/j.issn.2218-6751.2014.08.02.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee DH, Kim D-W, Ahn M-J. AZD9291 activity in patients with leptomeningeal disease from non-small cell lung cancer: a phase I study [abstract]. In: Proceedings of the 2015 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Boston, Massachusetts. Philadelphia (PA): AACR; 2015:Nov 5-9.

  67. Varga A, Camidge DR, Sequist LV. Activity of rociletinib in EGFR mutant NSCLC patients with a history of CNS involvement. In: European Journal of Cancer. vol 51. Elsevier Sci Ltd The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England; 2015:S598-S598.

  68. Inman S. FDA Requests additional data for rociletinib in EGFR T790M-mutant NSCLC. OncLive. http://www.onclive.com/web-exclusives/fda-requests-additional-data-for-rociletinib-in-egfr-t790m-mutant-nsclc. Published 2015. Accessed February 14, 2016.

  69. Kim D-W, Yang J C-H, Chen K, Cheng Z, Yin L, Martin PD et al. AZD3759, an EGFR inhibitor with blood brain barrier (BBB) penetration for the treatment of non-small cell lung cancer (NSCLC) with brain metastasis (BM). J Clin Oncol 33, 2015 (suppl; abstr 8016). http://meetinglibrary.asco.org/content/146873-156. Accessed November 11, 2015.

  70. Toyokawa G, Seto T, Takenoyama M, Ichinose Y. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary? Cancer Metastasis Rev. 2015. doi:10.1007/s10555-015-9592-y.

    PubMed  PubMed Central  Google Scholar 

  71. Metro G, Lunardi G, Floridi P, et al. CSF concentration of crizotinib in two ALK-positive non-small-cell lung cancer patients with CNS metastases deriving clinical benefit from treatment. J Thorac Oncol. 2015;10(5):e26–7. doi:10.1097/JTO.0000000000000468.

    Article  PubMed  Google Scholar 

  72. Costa DB, Kobayashi S, Pandya SS, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29(15):e443–5. doi:10.1200/JCO.2010.34.1313.

    Article  PubMed  Google Scholar 

  73. Costa DB, Shaw AT, Ou S-HI, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33(17):1881–8. doi:10.1200/JCO.2014.59.0539. Analysis of the crizotinib phase III trials PROFILE 1005 and 1007 patients showed favorable efficacy with CNS disease control rates (DCR) comparable to systemic disease control rates (about 55 % at 12 weeks) and 18–33 % of patients having CNS response.

    Article  CAS  PubMed  Google Scholar 

  74. Johung KL, Yeh N, Desai NB, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol. 2015;34(2):123–9. doi:10.1200/JCO.2015.62.0138. A retrospective study of 90 patients with brain metastatic ALK-rearranged NSCLC found significantly prolonged overall survival (~4 years) with repeated local interventions for intracranial disease.

    Article  PubMed  Google Scholar 

  75. Shaw AT, Mehra R, Tan DSW. 1293P * Evaluation of ceritinib-treated patients (pts) with anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) and brain metastases in the ascend-1 study. Ann Onc. 2014;25(suppl_4):iv455. doi:10.1093/annonc/mdu349.72. a - 456.

    Google Scholar 

  76. Gadgeel SM, Gandhi L, Riely GJ, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15(10):1119–28. doi:10.1016/S1470-2045(14)70362-6.

    Article  CAS  PubMed  Google Scholar 

  77. Ou S-HI, Ahn JS, De Petris L. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol. November 2015:JCO.2015.63.9443 - . doi:10.1200/JCO.2015.63.9443. A larger phase II global study of 84 patients with CNS metastasis treated with alectinib found the response rate was 57 % (of 35 evaluable patients) with seven complete responses (20 %).

  78. Johnson TW, Richardson PF, Bailey S, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros o. J Med Chem. 2014;57(11):4720–44. doi:10.1021/jm500261q.

    Article  CAS  PubMed  Google Scholar 

  79. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35. doi:10.1056/NEJMoa1504627.

    Article  CAS  PubMed  Google Scholar 

  80. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. doi:10.1056/NEJMoa1507643.

    Article  CAS  PubMed  Google Scholar 

  81. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28. doi:10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  82. Berghoff AS, Inan C, Ricken G. 1324P * Tumor-infiltrating lymphocytes (TILS) and PD-l1 expression in non-small cell lung cancer brain metastases (BM) and matched primary tumors (PT). Ann Onc. 2014;25(suppl_4):iv465. doi:10.1093/annonc/mdu349.103. b - 466.

    Google Scholar 

  83. Goldberg SB, Gettinger SN, Mahajan A. Activity and safety of pembrolizumab in patients with metastatic non-small cell lung cancer with untreated brain metastases. ASCO Meet Abstr. 2015;33(15_suppl):8035. Preliminary efficacy of anti-PD-1 therapy in brain metastasis of NSCLC.

    Google Scholar 

  84. Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65. doi:10.1016/S1470-2045(15)70054-9.

    Article  CAS  PubMed  Google Scholar 

  85. Arrieta O, Ortega A, Rangel C. Gene expression signature to predict early development of brain metastasis in lung adenocarcinoma. In: ASCO Meeting Abstracts.; 2015.

  86. Nguyen DX, Chiang AC, Zhang XH-F, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62. doi:10.1016/j.cell.2009.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Almendro V, Kim HJ, Cheng Y-K, et al. Genetic and phenotypic diversity in breast tumor metastases. Cancer Res. 2014;74(5):1338–48. doi:10.1158/0008-5472.CAN-13-2357-T.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanborn JZ, Chung J, Purdom E, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A. 2015;112(35):10995–1000. doi:10.1073/pnas.1508074112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brastianos PK, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164–77. doi:10.1158/2159-8290.CD-15-0369. Whole-exome sequencing on 86 matched brain metastases, primary tumor, and normal tissue samples and found that in 53 % of cases, potentially clinically relevant alterations were found in brain metastases that were not found in the primary tumor.

    Article  CAS  PubMed  Google Scholar 

  90. Paik PK, Shen R, Won H, et al. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discov. 2015;5(6):610–21. doi:10.1158/2159-8290.CD-14-1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cloughesy TF, Yoshimoto K, Nghiemphu P, et al. Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008;5(1):e8. doi:10.1371/journal.pmed.0050008.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. doi:10.1126/scitranslmed.3007094.

    Article  PubMed  PubMed Central  Google Scholar 

  93. De Mattos-Arruda L, Mayor R, Ng CKY, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839. doi:10.1038/ncomms9839. Studies evaluating cell-free circulating DNA in the cerebrospinal fluid (CSF) have been underway. De Mattos-Arruda et al studied a cohort of 12 patients (glioblastoma, metastatic lung and breast cancer) and correlated sequenced DNA from tumor tissue sample and ctDNA of CSF and plasma.

    Article  PubMed  Google Scholar 

  94. Wang Y, Springer S, Zhang M, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A. 2015;112(31):9704–9. doi:10.1073/pnas.1511694112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatim Husain M.D..

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, N., Woodward, B., Johnson, A. et al. Novel Treatment Strategies for Brain Metastases in Non-small-cell Lung Cancer. Curr. Treat. Options in Oncol. 17, 25 (2016). https://doi.org/10.1007/s11864-016-0400-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-016-0400-x

Keywords

Navigation