Skip to main content

Advertisement

Log in

Histology-Specific Uses of Tyrosine Kinase Inhibitors in Non-gastrointestinal Stromal Tumor Sarcomas

  • Sarcoma (SH Okuno, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Adult sarcomas, especially those with metastatic or unresectable disease, have limited treatment options. Traditional chemotherapeutic options have been limited by poor response rates in patients with advanced sarcomas. The important clinical question is whether the success of targeted therapy in GIST can be extended to other sarcomas and also if preclinical data describing targets across this heterogeneous group of cancers can be translated to clinical efficacy of known and upcoming target specific agents. Multi-targeted tyrosine kinase inhibitors (TKI) such as pazopanib, sorafenib, sunutinib, cediranib have shown benefits across various histologies of soft tissue sarcoma as well as bone sarcomas. The efficacy of imatinib in Dermatofibrosarcoma Protruberans; sunitinib and cediranib in alveolar soft part sarcoma; and sorafenib and imatinib in chordomas have provided a treatment option of these rare tumors where no effective options existed. TKIs are being tested in combination with chemotherapy as well as radiation to improve response. Although traditional RECIST criteria may not adequately reflect response to these targeted agents, the studies have shown promise for the efficacy of TKIs across the spectrum of sarcomas. The integration of biomarker studies with clinical trials may help further identify responders beyond that defined by histology. With the current data, TKIs are being used both as first-line treatment and beyond in non-GIST sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ducimetiere F, Lurkin A, Ranchere-Vince D, Decouvelaere AV, Peoc’h M, Istier L, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8), e20294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO classification of tumours of soft tissue and bone. [press release]. Lyon, France IARC press 2013.

  3. Forscher C, Mita M, Figlin R. Targeted therapy for sarcomas. Biol: Targets Ther. 2014;8:91–105.

    CAS  Google Scholar 

  4. Frith AE, Hirbe AC, Van Tine BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep. 2013;15(4):378–85.

    Article  CAS  PubMed  Google Scholar 

  5. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science (New York, NY). 1998;279(5350):577–80.

    Article  CAS  Google Scholar 

  6. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.

    Article  CAS  PubMed  Google Scholar 

  7. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344(14):1052–6.

    Article  CAS  PubMed  Google Scholar 

  8. van Oosterom AT, Judson I, Verweij J, Stroobants S, Donato di Paola E, Dimitrijevic S, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet (London, England). 2001;358(9291):1421–3.

    Article  Google Scholar 

  9. Ordóñez JL, Martins AS, Osuna D, Madoz–Gúrpide J, de Alava E. Targeting sarcomas: therapeutic targets and their rational. Semin Diagn Pathol. 2008;25(4):304–16.

    Article  PubMed  Google Scholar 

  10. Versleijen-Jonkers YM, Vlenterie M, van de Luijtgaarden AC, van der Graaf WT. Anti-angiogenic therapy, a new player in the field of sarcoma treatment. Crit Rev Oncol/hematol. 2014;91(2):172–85.

    Article  Google Scholar 

  11. Dickson MA. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014;20(13):3379–83.

    Article  CAS  Google Scholar 

  12. Zhang L, Hannay JA, Liu J, Das P, Zhan M, Nguyen T, et al. Vascular endothelial growth factor overexpression by soft tissue sarcoma cells: implications for tumor growth, metastasis, and chemoresistance. Cancer Res. 2006;66(17):8770–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A. PDGF receptors as cancer drug targets. Cancer Cell. 2003;3(5):439–43.

    Article  CAS  PubMed  Google Scholar 

  14. Rutkowski P, Van Glabbeke M, Rankin CJ, Ruka W, Rubin BP, Debiec-Rychter M, et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol : Off J Am Soc Clin Oncol. 2010;28(10):1772–9. This was a pooled analysis of two phase II trials demonstrating the efficacy of imatinib in DFSP leading to its FDA approval for this sarcoma subtype.

    Article  CAS  Google Scholar 

  15. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):1472–89.

    Article  CAS  PubMed  Google Scholar 

  16. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, et al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol. 1999;19(10):7203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lasota J, Wang Z, Kim SY, Helman L, Miettinen M. Expression of the receptor for type i insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: an immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol. 2013;37(1):114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schoffski P, Adkins D, Blay JY, Gil T, Elias AD, Rutkowski P, et al. An open-label, phase 2 study evaluating the efficacy and safety of the anti-IGF-1R antibody cixutumumab in patients with previously treated advanced or metastatic soft-tissue sarcoma or Ewing family of tumours. Eur J Cancer (Oxford, England : 1990). 2013;49(15):3219–28.

    Article  CAS  Google Scholar 

  19. Kilvaer TK, Valkov A, Sorbye SW, Smeland E, Bremnes RM, Busund LT, et al. Fibroblast growth factor 2 orchestrates angiogenic networking in non-GIST STS patients. J Transl Med. 2011;9:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jour G, Scarborough JD, Jones RL, Loggers E, Pollack SM, Pritchard CC, et al. Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics. Hum Pathol. 2014;45(8):1563–71. Much of oncology drug development focuses on precision medicine. This study highlights the complexity and potential impact of this approach in soft tissue sarcomas.

    Article  CAS  PubMed  Google Scholar 

  21. Ambrosini G, Cheema HS, Seelman S, Teed A, Sambol EB, Singer S, et al. Sorafenib inhibits growth and mitogen-activated protein kinase signaling in malignant peripheral nerve sheath cells. Mol Cancer Ther. 2008;7(4):890–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maruwge W, D’Arcy P, Folin A, Brnjic S, Wejde J, Davis A, et al. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling. OncoTargets Ther. 2008;1:67–78.

    Article  CAS  Google Scholar 

  23. Pignochino Y, Grignani G, Cavalloni G, Motta M, Tapparo M, Bruno S, et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer. 2009;8:118.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J Clin Oncol : Off J Am Soc Clin Oncol. 2005;23(5):965–72.

    Article  CAS  Google Scholar 

  25. Maki RG, D’Adamo DR, Keohan ML, Saulle M, Schuetze SM, Undevia SD, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27(19):3133–40.

  26. Pacey S, Ratain MJ, Flaherty KT, Kaye SB, Cupit L, Rowinsky EK, et al. Efficacy and safety of sorafenib in a subset of patients with advanced soft tissue sarcoma from a Phase II randomized discontinuation trial. Investig New Drugs. 2011;29(3):481–8.

    Article  CAS  Google Scholar 

  27. Ray-Coquard I, Italiano A, Bompas E, Le Cesne A, Robin YM, Chevreau C, et al. Sorafenib for patients with advanced angiosarcoma: a phase II Trial from the French Sarcoma Group (GSF/GETO). Oncologist. 2012;17(2):260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. von Mehren M, Rankin C, Goldblum JR, Demetri GD, Bramwell V, Ryan CW, et al. Phase 2 Southwest Oncology Group-directed intergroup trial (S0505) of sorafenib in advanced soft tissue sarcomas. Cancer. 2012;118(3):770–6.

    Article  Google Scholar 

  29. Mei J, Zhu X, Wang Z, Wang Z. VEGFR, RET, and RAF/MEK/ERK pathway take part in the inhibition of osteosarcoma MG63 cells with sorafenib treatment. Cell Biochem Biophys. 2014;69(1):151–6.

    Article  CAS  PubMed  Google Scholar 

  30. Grignani G, Palmerini E, Dileo P, Asaftei SD, D’Ambrosio L, Pignochino Y, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2012;23(2):508–16.

    Article  CAS  Google Scholar 

  31. Grignani G, Palmerini E, Ferraresi V, D’Ambrosio L, Bertulli R, Asaftei SD, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  32. George S, Merriam P, Maki RG, Van den Abbeele AD, Yap JT, Akhurst T, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27(19):3154–60.

  33. Mahmood ST, Agresta S, Vigil CE, Zhao X, Han G, D’Amato G, et al. Phase II study of sunitinib malate, a multitargeted tyrosine kinase inhibitor in patients with relapsed or refractory soft tissue sarcomas. Focus on three prevalent histologies: leiomyosarcoma, liposarcoma and malignant fibrous histiocytoma. Int J Cancer J Int Cancer. 2011;129(8):1963–9.

    Article  Google Scholar 

  34. Hensley ML, Sill MW, Scribner Jr DR, Brown J, Debernardo RL, Hartenbach EM, et al. Sunitinib malate in the treatment of recurrent or persistent uterine leiomyosarcoma: a Gynecologic Oncology Group phase II study. Gynecol Oncol. 2009;115(3):460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stacchiotti S, Pantaleo MA, Astolfi A, Dagrada GP, Negri T, Dei Tos AP, et al. Activity of sunitinib in extraskeletal myxoid chondrosarcoma. Eur J Cancer (Oxford, England : 1990). 2014;50(9):1657–64.

    Article  CAS  Google Scholar 

  36. Stacchiotti S, Negri T, Zaffaroni N, Palassini E, Morosi C, Brich S, et al. Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2011;22(7):1682–90.

    Article  CAS  Google Scholar 

  37. Stacchiotti S, Negri T, Libertini M, Palassini E, Marrari A, De Troia B, et al. Sunitinib malate in solitary fibrous tumor (SFT). Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2012;23(12):3171–9.

    Article  CAS  Google Scholar 

  38. Sleijfer S, Ray-Coquard I, Papai Z, Le Cesne A, Scurr M, Schoffski P, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27(19):3126–32.

    Article  CAS  Google Scholar 

  39. van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet (London, England). 2012;379(9829):1879–86. Randomized placebo controlled phase III trial that led to the FDA approval of pazopanib in metastatic soft tissue sarcoma.

    Article  Google Scholar 

  40. Maruzzo M, Martin-Liberal J, Messiou C, Miah A, Thway K, Alvarado R, et al. Pazopanib as first line treatment for solitary fibrous tumours: the Royal Marsden Hospital experience. Clin Sarcoma Res. 2015;5:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Attia S, Okuno SH, Robinson SI, Webber NP, Indelicato DJ, Jones RL, et al. Clinical activity of pazopanib in metastatic extraosseous Ewing sarcoma. Rare Tumors. 2015;7(2):5992.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Semenisty V, Naroditsky I, Keidar Z, Bar-Sela G. Pazopanib for metastatic pulmonary epithelioid hemangioendothelioma-a suitable treatment option: case report and review of anti-angiogenic treatment options. BMC Cancer. 2015;15:402.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martin-Liberal J, Benson C, McCarty H, Thway K, Messiou C, Judson I. Pazopanib is an active treatment in desmoid tumour/aggressive fibromatosis. Clin Sarcoma Res. 2013;3(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fu S, Hou MM, Naing A, Janku F, Hess K, Zinner R, et al. Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2015;26(5):1012–8.

    Article  CAS  Google Scholar 

  45. Tavallai S, Hamed HA, Grant S, Poklepovic A, Dent P. Pazopanib and HDAC inhibitors interact to kill sarcoma cells. Cancer Biol Ther. 2014;15(5):578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haas RL, Gelderblom H, Sleijfer S, van Boven HH, Scholten A, Dewit L, et al. A phase I study on the combination of neoadjuvant radiotherapy plus pazopanib in patients with locally advanced soft tissue sarcoma of the extremities. Acta Oncol (Stockholm, Sweden). 2015;54(8):1195–201.

    Article  CAS  Google Scholar 

  47. Wong P, Houghton P, Kirsch DG, Finkelstein SE, Monjazeb AM, Xu-Welliver M, et al. Combining targeted agents with modern radiotherapy in soft tissue sarcomas. J Nat Cancer Inst. 2014;106(11).

  48. Munhoz RR, D’Angelo SP, Gounder MM, Keohan ML, Chi P, Carvajal RD, et al. A phase Ib/II study of gemcitabine and docetaxel in combination with pazopanib for the neoadjuvant treatment of soft tissue sarcomas. Oncologist. 2015.

  49. Judson I, Scurr M, Gardner K, Barquin E, Marotti M, Collins B, et al. Phase II study of cediranib in patients with advanced gastrointestinal stromal tumors or soft-tissue sarcoma. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014;20(13):3603–12.

    Article  CAS  Google Scholar 

  50. Fox E, Aplenc R, Bagatell R, Chuk MK, Dombi E, Goodspeed W, et al. A phase 1 trial and pharmacokinetic study of cediranib, an orally bioavailable pan-vascular endothelial growth factor receptor inhibitor, in children and adolescents with refractory solid tumors. J Clin Oncol : Off J Am Soc Clin Oncol. 2010;28(35):5174–81.

    Article  CAS  Google Scholar 

  51. van Cruijsen H, Voest EE, Punt CJ, Hoekman K, Witteveen PO, Meijerink MR, et al. Phase I evaluation of cediranib, a selective VEGFR signalling inhibitor, in combination with gefitinib in patients with advanced tumours. Eur J Cancer (Oxford, England : 1990). 2010;46(5):901–11.

    Article  Google Scholar 

  52. Mross K, Frost A, Steinbild S, Hedbom S, Buchert M, Fasol U, et al. A phase I dose-escalation study of regorafenib (BAY 73–4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res : Off J Am Assoc Cancer Res. 2012;18(9):2658–67.

    Article  CAS  Google Scholar 

  53. Patel KU, Szabo SS, Hernandez VS, Prieto VG, Abruzzo LV, Lazar AJ, et al. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol. 2008;39(2):184–93. This study outlines the underlying mechanism for the efficacy of imatinib in DFSP.

    Article  CAS  PubMed  Google Scholar 

  54. Malhotra B, Schuetze SM. Dermatofibrosarcoma protruberans treatment with platelet-derived growth factor receptor inhibitor: a review of clinical trial results. Curr Opin Oncol. 2012;24(4):419–24.

    Article  CAS  PubMed  Google Scholar 

  55. Ugurel S, Mentzel T, Utikal J, Helmbold P, Mohr P, Pfohler C, et al. Neoadjuvant imatinib in advanced primary or locally recurrent dermatofibrosarcoma protuberans: a multicenter phase II DeCOG trial with long-term follow-up. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014;20(2):499–510.

    Article  CAS  Google Scholar 

  56. Stacchiotti S, Longhi A, Ferraresi V, Grignani G, Comandone A, Stupp R, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol : Off J Am Soc Clin Oncol. 2012;30(9):914–20.

    Article  CAS  Google Scholar 

  57. Hindi N, Casali PG, Morosi C, Messina A, Palassini E, Pilotti S, et al. Imatinib in advanced chordoma: a retrospective case series analysis. Eur J Cancer (Oxford, England : 1990). 2015.

  58. van Maldegem AM, Gelderblom H, Palmerini E, Dijkstra SD, Gambarotti M, Ruggieri P, et al. Outcome of advanced, unresectable conventional central chondrosarcoma. Cancer. 2014;120(20):3159–64.

    Article  PubMed  Google Scholar 

  59. Gobin B, Moriceau G, Ory B, Charrier C, Brion R, Blanchard F, et al. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models. PLoS One. 2014;9(3), e90795.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamaguchi SI, Ueki A, Sugihara E, Onishi N, Yaguchi T, Kawakami Y, et al. Synergistic antiproliferative effect of imatinib and adriamycin in platelet-derived growth factor receptor-expressing osteosarcoma cells. Cancer Sci. 2015;106(7):875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki L. Keedy MD, MSCI.

Ethics declarations

Conflict of Interest

Tarsheen K Sethi declares that she has no conflict of interest.

Vicki L Keedy has received financial support through a grant(s) from Plexicon, ZIOPHARM Oncology, ARIAD Pharmaceuticals, Novartis, CytRx, Eleison, Biogen, Pfizer, Merrimack, Amgen, Abraxis, and MedPacto; and has received compensation from Johnson & Johnson/Janssen and Threshold for service on advisory boards.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sarcoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, T.K., Keedy, V.L. Histology-Specific Uses of Tyrosine Kinase Inhibitors in Non-gastrointestinal Stromal Tumor Sarcomas. Curr. Treat. Options in Oncol. 17, 11 (2016). https://doi.org/10.1007/s11864-015-0382-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-015-0382-0

Keywords

Navigation