Skip to main content

Advertisement

Log in

Current Management and Treatment Modalities for Intramedullary Spinal Cord Tumors

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Intramedullary spinal cord tumors are rare central nervous system tumors with unique challenges due to the eloquence of the surrounding tissue. Their treatment and prognosis is largely dependent on tumor histology and patient functionality. The introduction and advancement of microsurgical techniques have made surgery the mainstay of treatment for intramedullary tumors. Tumors that are well demarcated (e.g., ependymomas, hemangioblastomas) can be resected for cure, while more infiltrative tumors (e.g., high-grade astrocytomas) are typically managed with biopsies or limited resections in order to minimize the significant risk of damage to the spinal cord. The use of more aggressive surgical resection for astrocytoma is controversial but may have an increasing role in select cases. The use of intraoperative neurophysiologic monitoring and intraoperative ultrasound may help guide the extent of surgery while minimizing damage to normal tissue. Advances in MRI technology have greatly aided the diagnosis and preoperative planning of intramedullary tumors. Further advances in intraoperative MRI may make this a useful tool in guiding extent of resection. Preoperative functional status is the most important predictor of neurologic outcome, while histology and extent of resection are the most important predictors of progression-free survival. The use of adjuvant radiation and chemotherapy is dependent on patient age and histology but is largely reserved for high-grade tumor histologies or systemic involvement. Children are particularly at risk of radiation-induced injury, and these cases may benefit from more focused stereotactic radiation where necessary. Further studies are needed to support new surgical strategies minimizing destabilization and to investigate new forms of adjuvant therapy to minimize toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Manzano G, Green BA, Vanni S, et al. Contemporary management of adult intramedullary spinal tumors—pathology and neurological outcomes related to surgical resection. Spinal Cord. 2008;46:540–6.

    Article  CAS  PubMed  Google Scholar 

  2. Bostrom A, von Lehe M, Hartmann W, et al. Surgery for spinal cord ependymomas: outcome and prognostic factors. Neurosurgery. 2011;68(2):302–8.

    Article  PubMed  Google Scholar 

  3. Raco A, Esposito V, Lenzi J, et al. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery. 2005;56(5):972–81.

    PubMed  Google Scholar 

  4. Treadway TL. Minimally invasive approaches for the treatment of intramedullary spinal tumors. Neurosurg Clin N Am. 2014;25:327–36.

    Article  Google Scholar 

  5. Karikari IO, Nimjee SM, Hodges TR, et al. Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single center experience with 102 patients. Neurosurgery. 2011;68:188–97. (Republished 2015, 76(suppl 1):S4-13). This article retrospectively reviews a large number of patients to analyze variables predictive of neurological outcome. It highlights the importance of tumor histology on surgical resectability, recurrence, and outcome.

    Article  PubMed  Google Scholar 

  6. Shrivastava RK, Epstein FJ, Perin NI, et al. Intramedullary spinal cord tumors in patients older than 50 years of age: management and outcome analysis. J Neurosurg Spine. 2005;2:249–55.

    Article  PubMed  Google Scholar 

  7. McCormick PC, Torres R, Post KD, et al. Intramedullary ependymoma of the spinal cord. J Neurosurgery. 1990;72:523–32.

    Article  CAS  Google Scholar 

  8. Deutsch H, Jallo GI, Faktorovich A, Epstein F. Spinal intramedullary cavernoma: clinical presentation and surgical outcome. J Neurosurg. 2000;93(1 Suppl):65–70.

    CAS  PubMed  Google Scholar 

  9. Wang Y, Wang M, Liang H, Yu Q, et al. Imaging and clinical properties of inflammatory demyelinating pseudotumor in the spinal cord. Neurla Regen Res. 2013;8(26):2484–94.

    Google Scholar 

  10. Klawiter EC, Benzinger T, Roy A, et al. Spinal cord ring enhancement in multiple sclerosis. Arch Neurol. 2010;67(11):1395–8.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bourgouin PM, Lesage J, Fontaine S, Konan A, et al. A pattern approach to the differential diagnosis of intramedullary spinal cord lesions on MR imaging. AJR Am J Roentgenol. 1998;170(6):1645–9.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Tian W, Kolar B, et al. Advanced MR diffusion tensor imaging and perfusion weighted imaging of intramedullary tumors and tumor like lesions in the cervicomedullary junction region and cervical spinal cord. J Neurooncol. 2014;116:559–66.

    Article  PubMed  Google Scholar 

  13. Arima H, Hasegawa T, Togawa D, et al. Feasibility of a novel diagnostic chart of intramedullary spinal cord tumors in magnetic resonance imaging. Spinal Cord. 2014;52:769–73. This article provides a simple methodology for diagnosis of intramedullary tumors based on MRI characteristics with a high degree of reported accuracy.

    Article  CAS  PubMed  Google Scholar 

  14. Kim DH, Kim JH, Choi SH, et al. Differentiation between intramedullary spinal ependymoma and astrocytoma: comparative MRI analysis. Clin Radiol. 2014;69(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  15. Bostrom A, Kanther NC, Grote A, Bostrom J. Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC Res Notes. 2014;7:908. This article retrospectively reviews 70 adult cases of IMSCTs and assesses comprehensive treatment strategies and outcomes. The article advocates gross total resection of ependymomas, partial resection and adjuvant therapy for high-grade gliomas, and predominantly biopsy with adjuvant therapy for metastases.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Sung WS, Sung MJ, Chan JH, et al. Intramedullary spinal cord metastases: a 20-year institutional experience with a comprehensive literature review. World Neurosurg. 2013;79(3,4):576–84.

    Article  PubMed  Google Scholar 

  17. Harrop JS, Ganju A, Groff M, Bilsky M. Primary intramedullary tumors of the spinal cord. Spine. 2009;34(22s):S69–77.

    Article  PubMed  Google Scholar 

  18. Klekamp J. Treatment of intramedullary tumors: analysis of surgical morbidity and long-term results. J Neurosurg Spine. 2013;19:12–26. This study offers a high number of patients (278) with intramedullary tumors and assesses risk factors for surgery and long-term results for these lesions. The results suggest that early intervention and high degrees of resection are advantageous, which is an important guide for surgeons managing these tumors.

    Article  PubMed  Google Scholar 

  19. Epstein FJ, Farmer J, Freed D. Adult intramedullary astrocytomas of the spinal cord. J Neurosurg. 1992;77(3):355–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez GB, Waldron JN, Wong CS, Laperriere NJ. A retrospective analysis of 52 cases of spinal cord glioma managed with radiation therapy. Int J Radiat Oncol Biol Phys. 2000;48(3):836–42.

    Google Scholar 

  21. Kahn J, Loeffler JS, Niemierko A, et al. Long-term outcomes of patients with spinal cord gliomas treated by modern conformal radiation techniques. Int J Radiat Oncol Biol Phys. 2011;81(1):232–8.

    Article  PubMed  Google Scholar 

  22. McGirt MJ, Goldstein IM, Tobias ME, et al. Extent of surgical resection of malignant astrocytomas of the spinal cord: Outcome analysis of 35 patients. Neurosurgery. 2008;63(1):55–60.

    Article  PubMed  Google Scholar 

  23. Wong AP, Dahdaleh NS, Fessler FG, et al. Risk factors and long-term survival in adult patients with primary malignant spinal cord astrocytomas. J Neurooncol. 2013;115:493–503.

    Article  CAS  PubMed  Google Scholar 

  24. Benes V, Barsa P, Benes Jr V, Suchomel P. Prognostic factors in intramedullary astrocytomas: a literature review. Eur Spin J. 2009;18:1397–422.

    Article  Google Scholar 

  25. Schellinger KA, Propp JM, Villano JL, et al. Descriptive epidemiology of primary spinal cord tumors. J Neurooncol. 2008;87(2):173–9.

    Article  PubMed  Google Scholar 

  26. Matsuyama Y, Sakai Y, Katayama Y, et al. Surgical results of intramedullary spinal cord tumor with spinal cord monitoring to guide extent of resection. J Neurosurg Spine. 2009;10(5):404–13.

    Article  PubMed  Google Scholar 

  27. Kumar R, Banerjee S. Management and functional outcome of intramedullary spinal cord tumors: a prospective clinical study. Asian J Neurosurg. 2014;9(4):177–81. This study offers a rare prospective study carried out on 43 patients with intramedullary tumors. Patients were treated with surgery and adjuvant radiotherapy, and outcome predictors were assessed. Preoperative functional status was the most predictive of functional outcome, while gross total excision was strongly correlated with progression-free survival.

    PubMed Central  PubMed  Google Scholar 

  28. Woodworth GF, Chiachana KL, McGirt MJ, et al. Predictors of ambulatory function after surgical resection of intramedullary spinal cord tumors. Neurosurgery. 2007;61(1):99–106.

    Article  PubMed  Google Scholar 

  29. Bostrom A, Hans FJ, Reinacher PC, Krings T, et al. Intramedullary hemangioblastomas: timing of surgery, microsurgical technique and follow-up in 23 patients. Eur Spin J. 2008;17(6):882–6.

    Article  CAS  Google Scholar 

  30. Kalita O. Current insights into surgery for intramedullary spinal cord metastases: a literature review. Int J Surg Oncol. 2011;98950, p. 5. doi:10.1155/2011/989506.

  31. Flanagan EP, O’Neill BP, Porter AB, et al. Primary intramedullary spinal cord lymphoma. Neurology. 2011;77(8):784–91.

    Article  CAS  PubMed  Google Scholar 

  32. Mechtler LL, Nandigam K. Spinal cord tumors: new views and directions. Neurol Clin. 2013;31(1):241–68.

    Article  PubMed  Google Scholar 

  33. Bekar A, Cordan T, Evrensel T, Tolunay S. A case of primary spinal intramedullary lymphoma. Surg Neurol. 2001;55(5):261–4.

    Article  CAS  PubMed  Google Scholar 

  34. Lee DK, Chung CK, Kim HJ, et al. Multifocal primary CNS T cell lymphoma of the spinal cord. Clin Neuropathol. 2002;21(4):149–55.

    CAS  PubMed  Google Scholar 

  35. Lall RR, Lall RR, Hauptman JS, Munoz C, et al. Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus. 2012;33(5):E10.

    Article  PubMed  Google Scholar 

  36. Cheng JS, Ivan ME, Stapleton CJ, et al. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors. J Neurosurg Pediatr. 2014;13:591–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Quinones-Hinojosa A, Lyon R, Zada G, et al. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery. 2006;56(5):982–93.

    Google Scholar 

  38. Sala F, Bricolo A, Faccioli F, et al. Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. Eur Spine J. 2007;16 Suppl 2:S130–9.

    Article  PubMed  Google Scholar 

  39. Ghandi R, Curtis CM, Cohen-Gadol AA. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor. J Neurosurg Spine. 2015;22:205–10.

    Article  Google Scholar 

  40. Nair D, Kumaraswamy V, Braver D, et al. Dorsal column mapping via phase reversal method: the refined technique and clinical applications. Neurosurgery. 2014;74(4):443–6.

    Article  Google Scholar 

  41. Toktas ZO, Sahin SS, Koban O, et al. Is intraoperative ultrasound required in cervical spinal tumors? A prospective study. Turk Neurosurg. 2013;23(5):600–6.

    PubMed  Google Scholar 

  42. Barbosa BJ, Mariano ED, Batista CM, et al. Intraoperative assistive technologies and extent of resection in glioma surgery: a systemetic review of prospective controlled studies. Neurosurg Rev. 2015;38(2):217–27.

    Article  PubMed  Google Scholar 

  43. Giordano M, Gerganov VM, Metwali H, et al. Feasibility of cervical intramedullary diffuse glioma resection using intraoperative magnetic resonance imaging. Neurosurg Rev. 2014;37:139–46.

    Article  Google Scholar 

  44. Choudhri AF, Whitehead MT, Klimo P, et al. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology. 2014;56:169–74.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicenter phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  46. Stummer W, Tonn JC, Goetz C, et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery. 2014;74(3):310–9. This is a prospective study designed to evaluate 5-ALA fluorescence as a tool for guiding surgical resections. The authors found that this technology was superior to contrast enhancement in identifying residual tumor.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Millesi M, Kiesel B, Woehrer A, Hainfellner JA, et al. Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors. Neurosurg Focus. 2014;36(2):E11. This is a prospective observational study used to evaluate 5-ALA induced fluorescence characteristics particularly in spinal tumors. The study suggested that fluorescence may be a useful marker for residual disease in intramedullary tumor surgery.

    Article  PubMed  Google Scholar 

  48. Ewelt C, Stumer W, Klink B, et al. Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection. Clin Neurol Neurosurg. 2010;112(4):357–61.

    Article  PubMed  Google Scholar 

  49. Coburger J, Engelke J, Scheuerle A, et al. Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus. 2014;36(2):E3.

    Article  PubMed  Google Scholar 

  50. Takami T, Yamagata T, Naito K, et al. Intraoperative assessment of spinal vascular flow in the surgery of spinal intramedullary tumors using indocyanine green videoangiography. Surg Neurol Int. 2013;4:135.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Chamberlain MC. Salvage chemotherapy for recurrent spinal cord ependymoma. Cancer. 2002;95(5):997–1002.

    Article  PubMed  Google Scholar 

  52. Loya JJ, Jung H, Temmins C, et al. Primary spinal germ cell tumors: a case analysis and review of treatment paradigms. Case Rep Med. 2013; vol. 2013;798358, p. 6. doi:10.1155/2013/798358.

  53. Capitanio JF, Mazza E, Motta M, et al. Mechanisms, indications and results of salvage systemic therapy for sporadic and von Hippel-Lindau related hemangioblastomas of the central nervous system. Crit Rev Oncol Hematol. 2013;86(1):69–84.

    Article  PubMed  Google Scholar 

  54. Stupp R, Hegi ME, Mason WP, van den Bent MJ, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  55. Kim WH, Yoon S, Kim CH, et al. Temozolomide for malignant primary spinal cord glioma: an experience of six cases and a literature review. J Neurooncol. 2011;101:247–54.

    Article  CAS  PubMed  Google Scholar 

  56. Morais N, Mascarenhas L, Soares-Fernandes JP, Silva A, et al. Primary spinal glioblastoma: a case report and review of the literature. Oncol Lett. 2013;5(3):992–6.

    PubMed Central  PubMed  Google Scholar 

  57. Tseng HM, Kuo LT, Lien HC, Liu KL, et al. Prolonged survival of a patient with cervical intramedullary glioblastoma multiform treated with total resection, radiation therapy, and temozolomide. Anticancer Drugs. 2010;21(10):963–7.

    Article  CAS  PubMed  Google Scholar 

  58. Temozolomide. Drugs@FDA. Food and Drug Administration Web site. http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021029s012lbl.pdf. Accessed 31 March 2015.

  59. McEvoy GK, in chief, Snow ED, editors. AHFS: Drug Information. Bethesda, MD: American Society of Health-System Pharmacists; 2015.

  60. Messali A, Hay JW, Villacorta R. The cost-effectiveness of temozolomide in the adjuvant treatment of newly diagnosed glioblastoma in the United States. Neuro-Oncology. 2013;15(11):1532–42.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Gwak SJ, An SS, Yang MS, et al. Effect of combined bevacizumab and temozolomide treatment on intramedullary spinal cord tumor. Spine. 2014;39(2):E65–73. This study uses an animal model of spinal glioma to demonstrate the combinatorial effects of temozolomide and bevacizumab in treating intramedullary tumors and suggests that this combination may enhance the therapeutic effect for malignant gliomas.

    Article  PubMed  Google Scholar 

  62. Chamberlain MC, Johnston SK. Recurrent spinal cord glioblastoma: salvage therapy with bevacizumab. J Neurooncol. 2011;102(3):427–32.

    Article  CAS  PubMed  Google Scholar 

  63. Bevacizumab. Drugs@FDA. Food and Drug Administration Web site. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125085s305lbl.pdf. Accessed 31 March 2015.

  64. Chen P, Sui M, Ye J, Wan Z, et al. An integrative analysis of treatment, outcomes, and prognostic factors for primary spinal anaplstic ependymomas. J Clin Neurosci. 2015;S0967–5868(15):00032–6.

    Google Scholar 

  65. Park HK, Chang JC. Review of stereotactic radiosurgery for intramedullary spinal lesions. Korean J Spine. 2013;10(1):1–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Shin DA, Huh RY, Chung SS, et al. Stereotactic spine radiosurgery for intradural and intramedullary metastasis. Neurosurg Focus. 2009;27(6):E10.

    Article  PubMed  Google Scholar 

  67. Donnellan CP, Caldwell K. TENS and FES for sensory impairment and gait dysfunction following removal of spinal cord ependymoma—a case report. Physiother Res Int. 2009;14(4):234–41.

    Article  PubMed  Google Scholar 

  68. Howell RM, GIebler A, Koontz-Raisig W, et al. Comparison of therapeutic dosimetric data from passively scattered proton and photon craniospinal irradiations for medulloblastoma. Radiat Oncol. 2012;7:116.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Brown AP, Barney CL, Grosshans DR. Proton beam craniospinal irradiation reduces acute toxicity for adults with medulloblastoma. Int J Radiat Oncol Biol Phys. 2013;86(2):277–84. This study provides a retrospective analysis of outcomes for adult medulloblastoma patients treated with craniospinal irradiation and suggests that proton beam therapy may reduce radiation-related morbidity in patients receiving craniospinal irradiation.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Mizumoto M, Oshiro Y, Takizawa D, et al. Proton beam therapy for pediatric patients with ependymoma. Pediatr Int. 2015. doi: 10.1111/ped.12624.

  71. Ogden AT, Fessler RG. Minimally invasive resection of intramedullary ependymoma: case report. Neurosurgery. 2009;65(6):E1203–4.

    Article  PubMed  Google Scholar 

  72. Tredway TL. Minimally invasive approaches for the treatment of intramedullary spinal tumors. Neurosurg Clin N Am. 2014;25(2):327–36.

    Article  PubMed  Google Scholar 

  73. Xie T, Qian J, Lue Y, et al. Unilateral multilevel interlaminar fenestration: a minimally invasive approach for cervical intramedullary lesions. J Clin Neurosci. 2014;21(7):1196–204.

    Article  PubMed  Google Scholar 

  74. Padanyi C, Vajda J, Banczerowski P. Para-split laminotomy: a rescue technique for split laminotomy approach in exploring intramedullary midline located pathologies. J Neurol Surg A Cent Eur Neurosurg. 2014;75(4):310–6.

    Article  PubMed  Google Scholar 

  75. Colnat-Coulbois S, Klein O, Braun M, Thouvenot P, et al. Management of intramedullary cystic pilocytic astrocytoma with rhenium-186 intracavitary irradiation: case report. Neurosurgery. 2010;66(5):E1023–4.

    Article  PubMed  Google Scholar 

  76. Pennant WA, Sciubba DM, Noggle JC, et al. Microscopic removal of intramedullary spinal cord gliomas in a rat spinal cod decreases onset to paresis, an animal model for intramedullary tumor treatment. Childs Nerv Syst. 2008;2008(24):901–7.

    Article  Google Scholar 

  77. Hsu W, Siu IM, Pradilla G, et al. Animal model of intramedullary spinal cord glioma using human glioblastoma multiforme neurospheres. J Neurosurg Spine. 2012;16:315–31.

    Article  PubMed  Google Scholar 

  78. Guss ZD, Moningi S, Jallo GI, et al. Management of pediatric spinal cord astrocytomas: outcomes with adjuvant radiation. Int J Radiat Oncol Biol Phys. 2013;85(5):1307–11. This study retrospectively evaluates treatment outcomes in pediatric patients with spinal cord astrocytomas. The results suggest that adjuvant radiation therapy provides a safe and efficacious method of tumor control in this patient population.

    Article  PubMed  Google Scholar 

  79. Jallo GI, Freed D, Epstein F. Intramedullary spinal cord tumors in children. Childs Nerv Syst. 2003;19:641–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rupa G. Juthani and Mark H. Bilsky declares that they have no conflict of interest.

Michael A. Vogelbaum has received royalties from and holds equity in Infuseon Therapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Vogelbaum M.D., Ph.D..

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juthani, R.G., Bilsky, M.H. & Vogelbaum, M.A. Current Management and Treatment Modalities for Intramedullary Spinal Cord Tumors. Curr. Treat. Options in Oncol. 16, 39 (2015). https://doi.org/10.1007/s11864-015-0358-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-015-0358-0

Keywords

Navigation