Skip to main content

Advertisement

Log in

Secondary Adult Acute Myeloid Leukemia: a Review of Our Evolving Understanding of a Complex Disease Process

  • Leukemia (JP Dutcher, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Secondary AML (s-AML) encompasses AML evolving from myelodysplasia (AML-MDS) and treatment-related AML (t-AML) after exposure to chemotherapy, radiation, or environmental toxins. S-AML has traditionally been considered a devastating disease, affecting a vulnerable population of heavily pretreated, older adults. A limited understanding of disease pathogenesis/heterogeneity and lack of effective treatments have hampered overall improvements in patient outcomes. With the recent understanding that the secondary nature of sAML does not by itself incur a poor prognosis and incorporation of cytogenetics and molecular genetics into patient care and the advancement of treatment, including improved supportive care, novel chemotherapeutics agents, and nonmyeloablative conditioning regimens as part of allogeneic hematopoietic cell transplantation (HCT), modest gains in survival and quality of life are beginning to be seen among patients with s-AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Paper of particular interest, published recently, have been highlighted as: • Of importance

  1. Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997–2002. Cancer Causes Control. 2008;19:379.

    Article  PubMed  Google Scholar 

  2. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9.

    Article  PubMed  Google Scholar 

  3. Sant M, Allemani C, Tereanu C, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116:3724.

    Article  CAS  PubMed  Google Scholar 

  4. Smith A, Howell D, Patmore R, et al. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer. 2011;105:1684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dores GM, Devesa SS, Curtis RE, et al. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood. 2012;119:34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Morton LM, Dores GM, Tucker MA, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975–2008. Blood. 2013;121:2996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Takeyama K, Seto M, Uike N, et al. Therapy-related leukemia and myelodysplastic syndrome: a large-scale Japanese study of clinical and cytogenetic features as well as prognostic factors. Int J Hematol. 2000;71:144.

    CAS  PubMed  Google Scholar 

  8. Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol. 2008;35:418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Swerdlow SH, Campo E, Harris NL, et al. (Eds). World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, IARC Press, Lyon 2008.

  10. Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2005;104:788.

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg OK, Seetharam M, Ren L, et al. Clinical characterization of acute myeloid leukemia with myelodysplasia-related changes as defined by the 2008 WHO classification system. Blood. 2009;113:1906.

    Article  CAS  PubMed  Google Scholar 

  12. Rücker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119(9):2114–21.

    Article  PubMed  CAS  Google Scholar 

  13. Zeichner SB, Alghamdi S, Elhammady G, et al. Prognostic significance of TP53 mutations and single nucleotide polymorphisms in acute myeloid leukemia: a case series and literature review. Asian Pac J Cancer Prev. 2014;15(4):1603–9.

    Article  PubMed  Google Scholar 

  14. Boultwood J, Pellagatti A, Cattan H, et al. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol. 2007;139(4):578.

    Article  CAS  PubMed  Google Scholar 

  15. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49.

    Article  CAS  PubMed  Google Scholar 

  16. Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665.

    Article  CAS  PubMed  Google Scholar 

  17. Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23(36):9234.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Fernald AA, Anastasi J, et al. Haploinsufficiency of Apc leads to ineffective hematopoiesis. Blood. 2010;115(17):3481.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu TX, Becker MW, Jelinek J, et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med. 2007;13(1):78.

    Article  PubMed  CAS  Google Scholar 

  20. McNerney ME, Brown CD, Wang X, et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood. 2013;121(6):975–83. doi:10.1182/blood-2012-04-426965.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Perera FP. Environment and cancer: who are suscep-tible? Science. 1997;278:1068.

    Article  CAS  PubMed  Google Scholar 

  22. Arana-Yi C, Block AW, Sait SN, et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia following treatment of acute myeloid leukemia: possible role of cytarabine. Leuk Res. 2008;32:1043.

    Article  CAS  PubMed  Google Scholar 

  23. Imagawa J, Harada Y, Shimomura T, et al. Clinical and genetic features of therapy-related myeloid neoplasms after chemotherapy for acute promyelocytic leukemia. Blood. 2010;116:6018.

    Article  CAS  PubMed  Google Scholar 

  24. Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43.

    Article  CAS  PubMed  Google Scholar 

  25. Rowley JD, Golomb HM, Vardiman JW. Nonrandom chromosome abnormalities in acute leukemia and dysmyelopoietic syndromes in patients with previously treated malignant disease. Blood. 1981;58:759.

    CAS  PubMed  Google Scholar 

  26. Traweek ST, Slovak ML, Nademanee AP, et al. Clonal karyotypic hematopoietic cell abnormalities occurring after autologous bone marrow transplantation for Hodgkin’s disease and non-Hodgkin’s lymphoma. Blood. 1994;84:957.

    CAS  PubMed  Google Scholar 

  27. Le Deley MC, Suzan F, Cutuli B, et al. Anthracyclines, mitoxantrone, radiotherapy, and granulocyte colony-stimulating factor: risk factors for leukemia and myelodysplastic syndrome after breast cancer. J Clin Oncol. 2007;25:292–300.

    Article  PubMed  CAS  Google Scholar 

  28. Brusamolino E, Anselmo AP, Klersy C, et al. The risk of acute leukemia in patients treated for Hodgkin’s disease is significantly higher after combined modality programs than after chemotherapy alone and is correlated with the extent of radiotherapy and type and duration of chemotherapy: A case–control study. Haematologica. 1998;83:812–8.

    CAS  PubMed  Google Scholar 

  29. Kantarjian HM, Keating MJ, Walters RS, et al. Therapy-related leukemia and myelodysplastic syndrome: clinical, cytogenetic, and prognostic features. J Clin Oncol. 1986;4:1748.

    CAS  PubMed  Google Scholar 

  30. Guillem V, Tormo M. Influence of DNA damage and repair upon the risk of treatment related leukemia. Leuk Lymphoma. 2008;49:204.

    Article  CAS  PubMed  Google Scholar 

  31. Allan JM, Wild CP, Rollinson S, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci U S A. 2001;98:11592.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bolufer P, Collado M, Barragan E, et al. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol. 2007;136:590.

    Article  CAS  PubMed  Google Scholar 

  33. Smith MT, Wang Y, Kane E, et al. Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood. 2001;97:1422.

    Article  CAS  PubMed  Google Scholar 

  34. Levine EG, Bloomfield CD. Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure. Semin Oncol. 1992;19(1):47.

    CAS  PubMed  Google Scholar 

  35. Little JB. Cellular, molecular, and carcinogenic effects of radiation. Hematol Oncol Clin North Am. 1993;7(2):337.

    CAS  PubMed  Google Scholar 

  36. Ratain MJ, Rowley JD. Therapy-related acute myeloid leukemia secondary to inhibitors of topoisomerase II: from the bedside to the target genes. Ann Oncol. 1992;3:107.

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen-Bjergaard J. Insights into leukemogenesis from therapy-related leukemia. N Engl J Med. 2005;352:1591.

    Article  CAS  PubMed  Google Scholar 

  38. Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493.

    Article  CAS  PubMed  Google Scholar 

  39. Pui CH, Relling MV. Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol. 2000;109:13.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang MH, Wang XY, Gao LS. 140 cases of acute leukemia caused by bimolane. Zhonghua Nei Ke Za Zhi. 1993;32:668.

    CAS  PubMed  Google Scholar 

  41. Xue Y, Lu D, Guo Y, Lin B. Specific chromosomal translocations and therapy-related leukemia induced by bimolane therapy for psoriasis. Leuk Res. 1992;16:1113.

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi K, Pemmaraju N, Strati P, et al. Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia. Blood. 2013;122:2807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pedersen-Bjergaard J, Andersen MK, Johansson B. Bal-anced chromosome aberrations in leukemias follow-ing chemotherapy with DNA-topoisomerase II inhibitors. J Clin Oncol. 1998;16:1897–8.

    CAS  PubMed  Google Scholar 

  44. Taylor JA, Sandler DP, Bloomfield CD, et al. ras oncogene activation and occupational exposures in acute myeloid leukemia. J Natl Cancer Inst. 1992;84:1626.

    Article  CAS  PubMed  Google Scholar 

  45. Lebailly P, Willett EV, Moorman AV, et al. Genetic polymorphisms in microsomal epoxide hydrolase and susceptibility to adult acute myeloid leukaemia with defined cytogenetic abnormalities. Br J Haematol. 2002;116:587.

    Article  CAS  PubMed  Google Scholar 

  46. Chakraborty S, Sun CL, Francisco L, et al. Accelerated telomere shortening precedes development of therapy-related myelodysplasia or acute myelogenous leukemia after autologous transplantation for lymphoma. J Clin Oncol. 2009;27:791.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Calado RT, Regal JA, Hills M, et al. Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia. Proc Natl Acad Sci U S A. 2009;106:1187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730.

    Article  CAS  PubMed  Google Scholar 

  49. Walter MJ, Shen D, Ding L, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366(12):1090–8. doi:10.1056/NEJMoa1106968. Epub 2012 Mar 14. First large study describing the clonal architecture of secondary AML.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. McCulloch EA. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood. 1983;62:1.

    CAS  PubMed  Google Scholar 

  51. Bonnet D. Normal and leukaemic stem cells. Br J Haematol. 2005;130:469.

    Article  CAS  PubMed  Google Scholar 

  52. Reilly JT. Pathogenesis of acute myeloid leukaemia and inv(16)(p13;q22): a paradigm for understanding leukaemogenesis? Br J Haematol. 2005;128:18.

    Article  CAS  PubMed  Google Scholar 

  53. Zeichner SB. Acute myeloid leukemia, genetics, and risk stratification: data overload or ready for a breakthrough? J Am Osteopath Assoc. 2012;112(7):463–5.

    PubMed  Google Scholar 

  54. Preiss Birgitte S, Bergman Olav J, Friis Lone S, et al. for the AML Study Group of Southern Denmark Cytogenetic findings in adult secondary acute myeloid leukemia (AML): frequency of favorable and adverse chromosomal aberrations do not differ from adult de novo AML. Cancer Genetics and Cytogenetics 2010 (202) 108.

  55. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354–65.

    Article  CAS  PubMed  Google Scholar 

  56. Kayser S, Dohner K, Krauter J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137–45.

    Article  CAS  PubMed  Google Scholar 

  57. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289.

    Article  PubMed  Google Scholar 

  59. Thol F, Weissinger EM, Krauter J, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95:1668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kosmider O, Gelsi-Boyer V, Slama L, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 2010;24:1094.

    Article  CAS  PubMed  Google Scholar 

  61. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Wu SJ, Kuo YY, Hou HA, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120:3106.

    Article  CAS  PubMed  Google Scholar 

  64. Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119:3578.

    Article  CAS  PubMed  Google Scholar 

  65. Chen CY, Lin LI, Tang JL, et al. RUNX1 gene mutation in primary myelodysplastic syndrome–the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol. 2007;139:405.

    Article  CAS  PubMed  Google Scholar 

  66. Steensma DP, Gibbons RJ, Mesa RA, et al. Somatic point mutations in RUNX1/CBFA2/AML1 are common in high-risk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur J Haematol. 2005;74:47.

    Article  CAS  PubMed  Google Scholar 

  67. Shih LY, Lin TL, Wang PN, et al. Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome. Cancer. 2004;101:989.

    Article  CAS  PubMed  Google Scholar 

  68. Georgiou G, Karali V, Zouvelou C, et al. Serial determination of FLT3 mutations in myelodysplastic syndrome patients at diagnosis, follow up or acute myeloid leukaemia transformation: incidence and their prognostic significance. Br J Haematol. 2006;134:302.

    Article  CAS  PubMed  Google Scholar 

  69. Borthakur G, Lin E, Jain N, et al. Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia. Cancer. 2009;115(14):3217.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075–83.

    CAS  PubMed  Google Scholar 

  71. Yakoub-Agha I, de La Salmoniere P, Ribaud P, et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French society of bone marrow transplantation. J Clin Oncol. 2000;18(5):963–71.

    CAS  PubMed  Google Scholar 

  72. Zinke-Cerwenka W, Valentin A, Posch U, et al. Reduced-intensity allografting in patients with therapy-related myeloid neoplasms and active primary malignancies. Bone Marrow Transplant. 2011;46(12):1540–4.

    Article  CAS  PubMed  Google Scholar 

  73. Rowe JM, Neuberg D, Friedenberg W, et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood. 2004;103:479.

    Article  CAS  PubMed  Google Scholar 

  74. Goldstone AH, Burnett AK, Wheatley K, et al. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1302.

    Article  CAS  PubMed  Google Scholar 

  75. Godwin JE, Kopecky KJ, Head DR, et al. A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest oncology group study (9031). Blood. 1998;91:3607.

    CAS  PubMed  Google Scholar 

  76. Uyl-de Groot CA, Löwenberg B, Vellenga E, et al. Cost-effectiveness and quality-of-life assessment of GM-CSF as an adjunct to intensive remission induction chemotherapy in elderly patients with acute myeloid leukemia. Br J Haematol. 1998;100:629.

    Article  CAS  PubMed  Google Scholar 

  77. Stone RM, Berg DT, George SL, et al. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer Leukemia Group B N Engl J Med. 1995;332:1671.

    Article  CAS  Google Scholar 

  78. Amadori S, Suciu S, Jehn U, et al. Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study. Blood. 2005;106:27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322–33.

    CAS  PubMed  Google Scholar 

  80. Kern W, Haferlach T, Schnittger S, et al. Prognosis in therapy-related acute myeloid leukemia and impact of karyotype. J Clin Oncol. 2004;22(12):2510.

    Article  PubMed  Google Scholar 

  81. Andersen MK, Larson RA, Mauritzson N, et al. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer. 2002;33(4):395.

    Article  PubMed  Google Scholar 

  82. Pulsoni A, Pagano L, Lo Coco F, et al. Clinicobiological features and outcome of acute promyelocytic leukemia occurring as a second tumor: The GIMEMA experience. Blood. 2002;100:1972–6.

    Article  CAS  PubMed  Google Scholar 

  83. Beaumont M, Sanz M, Carli PM, et al. Therapy-related Acute Promyelocytic Leukemia. J Clin Oncol. 2003;21:2123–37.

    Article  CAS  PubMed  Google Scholar 

  84. Schoch C, Kern W, Schnittger S, et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004;18(1):120.

    Article  CAS  PubMed  Google Scholar 

  85. Slovak ML, Bedell V, Popplewell L, et al. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop. Genes Chromosomes Cancer. 2002;33(4):379.

    Article  PubMed  Google Scholar 

  86. Anderson JE, Gooley TA, Schoch G, et al. Stem cell transplantation for secondary acute myeloid leukemia: evaluation of transplantation as initial therapy or following induction chemotherapy. Blood. 1997;89:2578.

    CAS  PubMed  Google Scholar 

  87. Armand P, Kim HT, DeAngelo DJ, et al. Impact of cytogenetics on outcome of de novo and therapy-related AML and MDS after allogeneic transplantation. Biol Blood Marrow Transplant. 2007;13:655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Litzow MR, Tarima S, Pérez WS, et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115:1850. One of the first large published reports describing the feasibility of allogeneic transplant in patients with secondary leukemia.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol. 2010;28:556.

    Article  CAS  PubMed  Google Scholar 

  90. Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28:562. First phase III trial demonstrating improvement in overall survival with a new class of chemotherapy, the hypomethylating agents.

    Article  CAS  PubMed  Google Scholar 

  91. Fenaux P, Gattermann N, Seymour JF, et al. Prolonged survival with improved tolerability in higher-risk myelodysplastic syndromes: azacitidine compared with low dose ara-C. Br J Haematol. 2010;149:244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429.

    Article  CAS  PubMed  Google Scholar 

  93. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30:2670.

    Article  CAS  PubMed  Google Scholar 

  95. Lübbert M, Rüter BH, Claus R, et al. A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy. Haematologica. 2012;97:393.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Pulsoni A, Pagano L. Treatment of secondary acute myeloid leukemia. J Clin Oncol. 2005;23(4):926–7.

    Article  PubMed  Google Scholar 

  97. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453.

    Article  PubMed  CAS  Google Scholar 

  98. Mrózek K, Marcucci G, Nicolet D, et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol. 2012;30:4515. Validated prognostic scoring system that had a large number of patients and incorporated cytogenetic and molecular alterations.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Röllig C, Bornhäuser M, Thiede C, et al. Long-Term Prognosis of Acute Myeloid Leukemia According to the New Genetic Risk Classification of the European LeukemiaNet Recommendations: Evaluation of the Proposed Reporting System. J Clin Oncol. 2011;29:2758–65.

    Article  PubMed  Google Scholar 

  100. Kantarjian HM, Erba HP, Claxton D, et al. Phase II study of clofarabine monotherapy in previously untreated older adults with acute myeloid leukemia and unfavorable prognostic factors. J Clin Oncol. 2010;28:549.

    Article  CAS  PubMed  Google Scholar 

  101. Burnett AK, Russell NH, Kell J, et al. European development of clofarabine as treatment for older patients with acute myeloid leukemia considered unsuitable for intensive chemotherapy. J Clin Oncol. 2010;28:2389.

    Article  CAS  PubMed  Google Scholar 

  102. Burnett AK, Russell NH, Hunter AE, et al. Clofarabine doubles the response rate in older patients with acute myeloid leukemia but does not improve survival. Blood. 2013;122:1384.

    Article  CAS  PubMed  Google Scholar 

  103. Garcia-Manero G, Tambaro FP, Bekele NB, et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol. 2012;30:2204.

    Article  CAS  PubMed  Google Scholar 

  104. Attar EC, Johnson JL, Amrein PC, et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J Clin Oncol. 2013;31:923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Fehniger TA, Byrd JC, Marcucci G, et al. Single-agent lenalidomide induces complete remission of acute myeloid leukemia in patients with isolated trisomy 13. Blood. 2009;113:1002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Fehniger TA, Uy GL, Trinkaus K, et al. A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia. Blood. 2011;117:1828.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Sekeres MA, Gundacker H, Lancet J, et al. A phase 2 study of lenalidomide monotherapy in patients with deletion 5q acute myeloid leukemia: Southwest Oncology Group Study S0605. Blood. 2011;118:523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490.

    CAS  PubMed  Google Scholar 

  109. Gemtuzumab for relapsed acute myeloid leukemia. Med Lett Drugs Ther 2000; 42:67.

  110. Ravandi F, Estey EH, Appelbaum FR, et al. Gemtuzumab ozogamicin: time to resurrect? J Clin Oncol. 2012;30:3921.

    Article  CAS  PubMed  Google Scholar 

  111. Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Amadori S, Suciu S, Stasi R, et al. Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J Clin Oncol. 2013;31:4424.

    Article  CAS  PubMed  Google Scholar 

  113. Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108:3262.

    Article  CAS  PubMed  Google Scholar 

  114. Ravandi F, Cortes JE, Jones D, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28:1856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Fischer T, Stone RM, Deangelo DJ, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Cortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31:3681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011;117:3294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Secondary AML. https://clinicaltrials.gov.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Simon B. Zeichner and Martha L. Arellano declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon B. Zeichner D.O..

Additional information

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeichner, S.B., Arellano, M.L. Secondary Adult Acute Myeloid Leukemia: a Review of Our Evolving Understanding of a Complex Disease Process. Curr. Treat. Options in Oncol. 16, 37 (2015). https://doi.org/10.1007/s11864-015-0355-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-015-0355-3

Keywords

Navigation