Skip to main content

Advertisement

Log in

Familial Leukemias

  • Leukemia (JP Dutcher, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Familial leukemia has been described for more than 50 years but only recently have modern genetic techniques allowed for the investigation of the genome. Genome-wide association studies have identified a number of genetic sites that appear to relate to susceptibility to leukemia in certain families and occasionally to susceptibility to a specific leukemia in general. Many questions remain, including susceptibility to what? An oncogenic virus? An environmental chemical? Mutation of another gene induced by a heritable mutation-promoting gene?.

Clinically important facts have been learned. Chronic lymphocytic leukemia (CLL) is by far the most common familial leukemia. Patients with CLL have approximately a 10 % chance of a first-degree relative developing CLL, and even a greater chance of one developing monoclonal B-cell lymphocytosis which may be an asymptomatic forme fruste of the neoplasm. Furthermore, there may be an increased incidence of breast cancer in familial CLL pedigrees which raises the question of a common etiology for neoplasms in general, or at least a previously unrecognized relationship among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Peterson Jr HR, Bowlds CF, Yam LT. Familial DiGuglielmo syndrome. Cancer. 1984;54:932–8.

    PubMed  Google Scholar 

  2. Novik Y, Marino P, Makower DF, Wiernik PH. Familial erythroleukemia: a distinct clinical and genetic type of familial leukemias. Leuk Lymphoma. 1998;30:395–401.

    CAS  PubMed  Google Scholar 

  3. Lillicrap DA, Sterndale H. Familial chronic myeloid leukaemia. Lancet. 1984;2(8404):699.

    CAS  PubMed  Google Scholar 

  4. Spremolia G, Simi P, Bilancia D, Papineschi F. Familial chronic myeloid leukemia. Description of 2 cases in brothers. Recenti Prog Med. 1987;78:69–72.

    Google Scholar 

  5. Lardi AA. Taha OM, al-Jefri A, Ahmed MA: Familial chronic myelocytic leukaemia-like syndrome probably of congenital origin. Acta Pediatr. 1994;83:558–60.

    CAS  Google Scholar 

  6. Kapsali E, Tsiara S, Christou L, Bourantas KL. Two siblings with chronic myelogenous leukemia. J Exp Clin Cancer Res. 2000;19:541–3.

    CAS  PubMed  Google Scholar 

  7. Bjorkholm M, Kristinsson SY, Landgren O, Goldin LR. No familial aggregation in chronic myeloid leukemia. Blood. 2013;122:460–1.

    PubMed Central  PubMed  Google Scholar 

  8. Pérez-Encinas M, Bello JL, Pérez-Crespo S, et al. Familial myeloproliferative syndrome. Am J Hematol. 1994;46:225–9.

    PubMed  Google Scholar 

  9. Skoda R, Prchal JT. Lessons from familial myeloproliferative disorders. Semin Hematol. 2005;42:266–73.

    CAS  PubMed  Google Scholar 

  10. Saint-Martin C, Leroy G, Delhommeau F, et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009;114:1628–32.

    CAS  PubMed  Google Scholar 

  11. Rumi E. Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol. 2008;26:131–8.

    CAS  PubMed  Google Scholar 

  12. Jones AV, Cross NC. Inherited predisposition to myeloproliferative neoplasms. Therm Adv Hematol. 2013;4:237–53.

    CAS  Google Scholar 

  13. Hemminki K, Jiang Y. Familial polycythemia vera: results from the Swedish Family Cancer Database. Leukemia. 2001;15:1313–5.

    CAS  PubMed  Google Scholar 

  14. Ranjan A, Penninga E, Jelsig AM, et al. Inheritance of the chronic myeloproliferative neoplasms. A systematic review. Clin Genet. 2013;83:99–107.

    CAS  PubMed  Google Scholar 

  15. Gaitonde S, Boumendjel R, Angeles R, Rondelli D. Familial childhood monosomy 7 and associated myelodysplasia. J Pediatr Hematol Oncol. 2010;32:e236–7.

    PubMed  Google Scholar 

  16. Horwitz M, Benson KE, Li FQ, et al. Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21-23.2. Am J Hum Genet. 1997;61:873–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Lawrie A, Stevenson DA, Doig TN, et al. Acute myeloid leukemia presenting in a mother and daughter pair with the identical acquired karyotypic abnormality consisting of inversion 3q21q26 and monosomy 7: a review of possible mechanisms. Cancer Genet. 2012;205:599–602.

    CAS  PubMed  Google Scholar 

  18. Hasle H, Olsen JH. Cancer in relatives of children with myelodysplastic syndrome, acute and chronic leukaemia. Br J Haematol. 1997;97:127–31.

    CAS  PubMed  Google Scholar 

  19. Minelli A, Maserati E, Giudici G, et al. Familial partial monosomy 7 and myelodysplasia: different parental origin of the monosomy 7 suggests action of a mutator gene. Cancer Genet Cytogenet. 2001;124:147–51.

    CAS  PubMed  Google Scholar 

  20. West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann NY Acad Sci. 2014;1310:111–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Holme H, Hossain U, Kirwan M, et al. Marked genetic heterogeneity in familial myelodysplasia/acute myeloid leukaemia. Br J Haematol. 2012;158:242–8. This paper describes disease genes that have been identified in some families with MDS/AML but makes the point that a large number of familial MDS/AML families have had no disease gene(s) identified.

    CAS  PubMed  Google Scholar 

  22. Cazzaniga G, Lo Nigro L, Cifola I, et al. Simultaneous occurrence of acute myeloid leukaemia with mutated nucleophosmin (NPM1) in the same family. Leukemia. 2008;23:199–203.

    PubMed  Google Scholar 

  23. Pradhan A, Mijovic A, Mills K, et al. Differentially expressed genes in adult familial myelodysplastic syndromes. Leukemia. 2004;18:449–59.

    CAS  PubMed  Google Scholar 

  24. Li JG, Wang SY, Huang YM, Wang CY. Full-length cDNA cloning and biological function analysis of a novel gene FAMLF related to familial acute myelogenous leukemia. Zhonghua Yi Xue Za Zhi. 2008;88:2667–71.

    CAS  PubMed  Google Scholar 

  25. Wang CY, Wang SY, Lin X, et al. Full-length cloning of a novel gene, ELF2C, related to familial acute myelogenous leukemia. Zhonghua Yi Xue Za Zhi. 2007;87:2245–8.

    CAS  PubMed  Google Scholar 

  26. Pan LL, Huang YM, Wang M, et al.: Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia. Eur J Hum Genet 2014; in press

  27. Bödör C, Benneville A, Smith M, et al. Germ-line GATA2 p. THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica. 2012;97:890–4.

    PubMed Central  PubMed  Google Scholar 

  28. Green CL, Tawana K, Hills RK, et al. GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations. Br J Haematol. 2013;161:701–5. This paper demonstrates that MDS/AML families with germline mutations often acquire somatic mutations before the leukemia becomes clinically diagnosed.

    CAS  PubMed  Google Scholar 

  29. Pabst T, Eyholzer M, Haefliger S, et al. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid Leukemia. J Clin Oncol. 2008;26:5088–93.

    CAS  PubMed  Google Scholar 

  30. Buijs A, Poddighe P, van Wijk R, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood. 2001;98:2856–8.

    CAS  PubMed  Google Scholar 

  31. Owen CJ, Toze CL, Koochin A, et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood. 2008;112:4639–45.

    CAS  PubMed  Google Scholar 

  32. Langabeer SE, Owen CJ, McCarron SL, et al. A novel RUNX1 mutation in a kindred with familial platelet disorder with propensity to acute myeloid leukaemia: male predominance of affected individuals. Eur J Haematol. 2010;85:552–3.

    PubMed  Google Scholar 

  33. Ho CY, Otterud B, Legare RD, et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1-22.2. Blood. 1996;87:5218–24.

    CAS  PubMed  Google Scholar 

  34. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75.

    CAS  PubMed  Google Scholar 

  35. Shiba N, Hasegawa D, Park MJ, et al. CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet disorder with propensity to develop acute myeloid leukemia (FPD/AML). Blood. 2012;119:2612–4.

    CAS  PubMed  Google Scholar 

  36. Ganly P, Walker LC, Morris CM. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia. Leuk Lymphoma. 2004;45:1–10.

    CAS  PubMed  Google Scholar 

  37. Gao J, Gentzler RD, Timms AE, et al. Heritable GATA2 mutations associated with familial AML-MDS: a case report and review of literature. J Hematol Oncol. 2014;7:36.

    PubMed Central  PubMed  Google Scholar 

  38. Goldin LR, Kristinsson SY, Liang XS, et al. Familial aggregation of acute leukemia and myelodysplastic syndromes. J Clin Oncol. 2012;30:179–83.

    PubMed Central  PubMed  Google Scholar 

  39. Kristinsson SY, Goldin LR, Turesson I, et al. Familial aggregation of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia with solid tumors and myeloid malignancies. Acta Haematol. 2012;127:173–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hanzis C, Ojha RP, Hunter Z, et al. Associated malignancies in patients with Waldenström’s macroglobulinemia and kin. Clin Lymphoma Myeloma Leuk. 2011;11:88–92.

    PubMed  Google Scholar 

  41. Greenberg MS, Anderson KC, Marchetto DJ, Li FP. Acute myelocytic leukemia in two brothers with polyposis coli and carcinoma of the colon. Ann Intern Med. 1981;95:702–3.

    CAS  PubMed  Google Scholar 

  42. Hemminki K, Chen B. Familial association of leukemia with colorectal cancer. Leuk Res. 2004;28:1113–5.

    PubMed  Google Scholar 

  43. Lynch HT, Weisenburger DD, Quinn-Laquer B, et al. Family with acute leukemia, breast, ovarian, and gastrointestinal cancer. Cancer Genet Cytogenet. 2002;137:8–14.

    PubMed  Google Scholar 

  44. Chen T, Fallah M, Kharazmi E, et al. Effect of a detailed family history of melanoma on risk for other tumors: a cohort study based on the nationwide Swedish Family-Cancer Database. J Investig Dermatol. 2014;134:930–6.

    CAS  PubMed  Google Scholar 

  45. Rauscher GH, Sandler DP, Poole C, et al. Is family history of breast cancer a marker of susceptibility to exposures in the incidence of de novo adult acute leukemia? Cancer Epidemiol Biomarkers Prev. 2003;12:289–94.

    PubMed  Google Scholar 

  46. Etkind PR, Stewart AF, Dorai T, et al. Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin’s lymphomas of individual patients diagnosed with both malignancies. Clin Cancer Res. 2004;10:5656–64.

    CAS  PubMed  Google Scholar 

  47. Viola MV, Frazier M, Wiernik PH, et al. Reverse transcriptase in leukocytes of leukemic patients in remission. N Engl J Med. 1976;294:75–80.

    CAS  PubMed  Google Scholar 

  48. Loughran Jr TP, Kidd P, Poiesz BJ. Familial occurrence of LGL leukaemia. Br J Haematol. 1994;87:199–201.

    PubMed  Google Scholar 

  49. Stalika E, Papalexandri A, Iskas M, et al. Familial CD3+ T large granular lymphocyte leukemia: evidence that genetic predisposition and antigen selection promote clonal cytotoxic T-cell responses. Leuk Lymphoma. 2014;55:1781–7.

    CAS  PubMed  Google Scholar 

  50. Miyamoto Y, Yamaguchi K, Nishimura H, et al. Familial adult T-cell leukemia. Cancer. 1985;55:181–5.

    CAS  PubMed  Google Scholar 

  51. Denic S, Abramson J, Anandakrishnan R, et al. The first report of familial adult T-cell leukemia lymphoma in the United States. Am J Hematol. 1988;27:281–3.

    CAS  PubMed  Google Scholar 

  52. Ratner L, Vander Heyden N, Paine E, et al. Familial adult T-cell leukemia/lymphoma. Am J Hematol. 1990;34:215–22.

    CAS  PubMed  Google Scholar 

  53. Prates V, Cobos M, Bouzas B, et al. The first report of familial T-cell leukemia/lymphoma in Argentina. Leuk Lymphoma. 2000;37:225–7.

    CAS  PubMed  Google Scholar 

  54. Nomura K, Utsunomiya A, Furushou H, et al. A family predisposition to adult T-cell leukemia. J Clin Explor Hematol. 2006;46:67–71.

    Google Scholar 

  55. Weber VV, Műller H, Moroni C, et al. Two siblings with acute T-cell lymphocytic leukemia. Int J Cancer. 1980;26:557–64.

    CAS  PubMed  Google Scholar 

  56. Wylin RF, Greene MH, Palutke M, et al. Hairy cell leukemia in three siblings: an apparent HLA-linked disease. Cancer. 1982;49:538–42.

    CAS  PubMed  Google Scholar 

  57. Ward FT, Baker J, Krishnan J, et al. Hairy cell leukemia in two siblings, A human leukocyte antigen-linked disease? Cancer. 1990;65:319–21.

    CAS  PubMed  Google Scholar 

  58. Gramatovici M, Bennett JM, Hiscock JG, Grewal KS. Three cases of familial hairy cell leukemia. Am J Hematol. 1993;42:337–9.

    CAS  PubMed  Google Scholar 

  59. Cohen HJ, Shimm D, Paris SA, et al. Hairy cell leukemia-associated familial lymphoproliferative disorder: immunologic abnormalities in unaffected members. Ann Intern Med. 1979;90:174–9.

    CAS  PubMed  Google Scholar 

  60. Toya T, Yoshimi A, Morioka T, et al. Development of hairy cell leukemia in familial platelet disorder with predisposition to acute myeloid leukemia. Platelets. 2014;25:300–2.

    CAS  PubMed  Google Scholar 

  61. Mantovani G, Piso A, Santa Cruz G, et al. Familial chronic B-cell malignancy. Hairy cell leukemia in mother and daughter. Haematol (Budapest). 1988;21:205–18.

    CAS  Google Scholar 

  62. Makower D, Marino P, Frank M, Wiernik PH. Familial hairy cell leukemia. Leuk Lymphoma. 1998;29:193–7.

    CAS  PubMed  Google Scholar 

  63. Begley CG, Tait B, Crapper RM, et al. Familial hairy cell leukemia. Leuk Res. 1987;11:1027–9.

    CAS  PubMed  Google Scholar 

  64. Casado LF, Mouleon P, Villarrubia B, et al. Familial hairy cell leukemia: a HLA-linked disease or farmers-linked disease? Haematologica. 1998;83:751–2.

    CAS  PubMed  Google Scholar 

  65. Cetiner M, Adigűzel C, Argon D, et al. Hairy cell leukemia in father and son. Med Oncol. 2003;20:375–8.

    PubMed  Google Scholar 

  66. Ferraz CN, Kerbauy J, Nazareth H, et al. Familial leukaemia. A report of three cases of acute leukaemia in a Brazilian family. Rev Bras Pesqui Med Biol. 1975;8:239–47.

    CAS  PubMed  Google Scholar 

  67. Tsunematsu Y, Koide R, Sasaki M, Ultsumi J. Four cases of familial childhood acute lymphocytic leukemia including three cases in a sibship. Rinsho Ketsueki. 1981;22:1938–47.

    CAS  PubMed  Google Scholar 

  68. Oláh E, Stenszky V, Kiss A, et al. Familial leukemia: Ph1 positive acute lymphoid leukemia of a mother and her infant. Blut. 1981;43:265–72.

    PubMed  Google Scholar 

  69. Hoffman RS. Familial acute lymphocytic leukemia of childhood: genetic study of six generations with many consanguineous marriages and four cases of acute leukemia. J Am Med Wom Assoc. 1976;31:396–401.

    CAS  PubMed  Google Scholar 

  70. Kende G, Toren A, Mandel M, et al. Familial leukemia: description of two kindreds and a review of the genetic aspects of the disease. Acta Haematol. 1994;92:208–11.

    CAS  PubMed  Google Scholar 

  71. Escher R, Wilson P, Carmichael C, et al. A pedigree with autosomal dominant thrombocytopenia, red cell macrocytosis, and an occurrence of t(12:21) positive pre-B-acute lymphoblastic leukemia. Blood Cells Mol Dis. 2007;39:107–14.

    CAS  PubMed  Google Scholar 

  72. Linden T, Schnittger S, Groll AH, et al. Childhood B-cell precursor acute lymphoblastic leukaemia in a patient with familial thrombocytopenia and RUNX1 mutation. Br J Haematol. 2010;151:528–30.

    CAS  PubMed  Google Scholar 

  73. Ripert M, Menegaux F, Perel Y, et al. Familial history of cancer and childhood acute leukemia: a French population-based case–control study. Eur J Cancer Prev. 2007;16:466–70.

    PubMed Central  PubMed  Google Scholar 

  74. Skibola CF, Slager SL, Berndt SI, et al. Medical history, lifestyle, family history and occupational risk factors for adult acute lymphocytic leukemia: The InterLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;48:125–9.

    Google Scholar 

  75. Zierhut H, Linet MS, Robison LL, et al. Family history of cancer and non-malignant diseases and risk of childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. Cancer Epidemiol. 2012;36:45–51.

    PubMed Central  PubMed  Google Scholar 

  76. Kharazmi E, da Silva Filho MI, Pukkala E, et al. Familial risks for childhood acute lymphocytic leukaemia in Sweden and Finland: far exceeding the effects of known germline variants. Br J Haematol. 2012;159:585–8. This is the first paper that describes the high risk for familial ALL in twins.

    PubMed  Google Scholar 

  77. Cao Y, Lupo PJ, Swartz MD, et al. Using a Bayesian hieraechical model for indentifying single nucleotide polymorphisms associated with childhood acute lymphoblastic leukemia risk in case-parent triads. PLoS One. 2013;8:e84658.

    PubMed Central  PubMed  Google Scholar 

  78. Catovsky D. Definition and diagnosis of sporadic and familial chronic lymphocytic leukemia. Hematol Oncol Clin North Am. 2004;18:783–94.

    PubMed  Google Scholar 

  79. Mauro FR, Giammartini E, Gentile M, et al. Clinical features and outcome of familial chronic lymphocytic leukemia. Haematologica. 2006;91:1117–20.

    PubMed  Google Scholar 

  80. Jønsson V, Tjønnfjord GE, Johannesen TB, et al. Familial chronic lymphocytic leukemia in Norway and Denmark: Comments on pleiotropy and birth order. In vivo. 2010;24:85–95.

    PubMed  Google Scholar 

  81. Yuille MR, Houlston RS, Catovsky D. Anticipation in familial chronic lymphocytic leukaemia. Leukemia. 1998;12:1696–8.

    CAS  PubMed  Google Scholar 

  82. Wiernik PH, Ashwin M, Hu XP, et al. Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol. 2001;113:407–14.

    CAS  PubMed  Google Scholar 

  83. Alexandrescu DT, Wiernik PH. The influence of parental age and gender on anticipation in familial B-cell malignancies. Med Oncol. 2007;24:55–62.

    PubMed  Google Scholar 

  84. Awan H, Jønsson V, Johannesen TB, et al. Anticipation in families with chronic lymphocytic leukemia and other lymphoproliferative disorders. Transl Oncogenomics. 2010;4:1–9.

    PubMed Central  PubMed  Google Scholar 

  85. Auer RL, Dighiero G, Goldin LR, et al. Trinucleotide repeat dynamic mutation identifying susceptibility in familial and sporadic chronic lymphocytic leukaemia. Br J Haematol. 2007;136:73–9.

    CAS  PubMed  Google Scholar 

  86. Ishibe N, Sgambati MT, Fontaine L, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42:99–108.

    CAS  PubMed  Google Scholar 

  87. Rawstron A, Hillmen P, Houlston R. Clonal lymphocytes in persons without known chronic lymphocytic leukemia (CLL): implications of recent findings in family members of CLL patients. Semin Hematol. 2004;41:192–200.

    PubMed  Google Scholar 

  88. Goldin LR, Slager SL, Caporaso NE. Familial chronic lymphocytic leukemia. Curr Opin Hematol. 2010;17:350–5.

    PubMed Central  PubMed  Google Scholar 

  89. Sellick GS, Allinson R, Matutes E, et al. Increased sex concordance of sibling pairs with chronic lymphocytic leukemia. Leukemia. 2004;18:1162–3.

    CAS  PubMed  Google Scholar 

  90. Horwitz M, Wiernik PH. Pseudoautosomal linkage of Hodgkin disease. Am J Hum Genet. 1999;65:1413–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Setlur SR, Ihm C, Tchinda J, et al. Comparison of familial and sporadic chronic lymphocytic leukaemia using high resolution array comparative genomic hybridization. Br J Haematol. 2010;151:336–45.

    PubMed Central  PubMed  Google Scholar 

  92. Cuttner J. Increased incidence of hematologic malignancies in first-degree relatives of patients with chronic lymphocytic leukemia. Cancer Investig. 1992;10:103–9.

    CAS  Google Scholar 

  93. Altieri A, Bermejo JL, Hemminki K. Familial risk for non-Hodgkin lymphoma and other lymphoproliferative malignancies by histopathologic subtype: the Swedish Family-Cancer Database. Blood. 2005;106:668–72.

    CAS  PubMed  Google Scholar 

  94. Goldin 42, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104:1850–4.

    Google Scholar 

  95. Goldin LR, Björkholm M, Kristinsson SY, et al. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009;94:647–53.

    PubMed Central  PubMed  Google Scholar 

  96. Marti GE, Carter P, Abbasi F, et al. B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2003;52:1–12.

    PubMed  Google Scholar 

  97. Goldin LR, Lanasa MC, Slager SL, et al. Common occurrence of monoclonal B-cell lymphocytosis among members of high-risk CLL families. Br J Haematol. 2010;151:152–8.

    PubMed Central  PubMed  Google Scholar 

  98. Slager SL, Benavente Y, Blair A, et al. Medical history, lifestyle, family history and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:41–51.

    PubMed  Google Scholar 

  99. Slager SL, Rabe KG, Achenbach SJ, et al. Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood. 2011;117:1911–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Slager SL, Caporaso NE, de Sanjose S, Goldin LR. Genetic susceptibility to chronic lymphocytic leukemia. Semin Hematol. 2013;50:296–302.

    CAS  PubMed  Google Scholar 

  101. Pritsch O, Troussard X, Magnac C, et al. VH gene usage by family members affected with chronic lymphocytic leukaemia. Br J Haeamtol. 1999;107:616–24.

    CAS  Google Scholar 

  102. Houlston RS, Catovsky D, Yuille MR. Genetic susceptibility to chronic lymphocytic leukemia. Leukemia. 2002;16:1008–14.

    CAS  PubMed  Google Scholar 

  103. Ng D, Marti GE, Fontaine L, et al. High-density mapping and follow-up studies on chromosomal regions 1, 3, 6, 12, 13 and 17 in 28 families with chronic lymphocytic leukaemia. Br J Hematol. 2006;133:58–61.

    Google Scholar 

  104. Ng D, Toure O, Wei MH, et al. Identification of a novel chromosome region, 13q21.33-q22.2, for susceptibility genes in familial chronic lymphocytic leukemia. Blood. 2007;109:916–25.

    CAS  PubMed  Google Scholar 

  105. Sellick GS, Goldin LR, Wild RW, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood. 2007;110:3326–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Summersgill B, Thornton P, Atkinson S, et al. Chromosomal imbalances in familial chronic lymphocytic leukaemia: a comparative genomic hybridization analysis. Leukemia. 2002;16:1229–32.

    CAS  PubMed  Google Scholar 

  107. Speedy HE, Sava G, Houlston RS. Inherited susceptibility to CLL. Adv Exp Med Biol. 2013;792:293–308.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Peter H. Wiernik declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Wiernik M.D.

Additional information

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiernik, P.H. Familial Leukemias. Curr. Treat. Options in Oncol. 16, 8 (2015). https://doi.org/10.1007/s11864-014-0323-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-014-0323-3

Keywords

Navigation