Opinion statement
Although it is absolutely clear that postremission therapy is currently necessary to obtain disease-free long-term survivorship for patients with acute myeloid leukemia (AML) in first complete remission (CR), it is not entirely clear what form that treatment should take. High-dose cytarabine is clearly effective and there definitely is a dose-response relationship for cytarabine and remission duration. High-dose cytarabine is effective for younger patients but not elderly patients. It is effective for patients with favorable cytogenetics but it is not clear whether it is effective for patients with intermediate or unfavorable cytogenetics. Furthermore, it is not clear what the most effective and least toxic dose and schedule of high-dose cytarabine is.
Similar content being viewed by others
References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med. 1994;331:896–903.
Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 1998;58:4173–9.
Fukushima T, Urasaki Y, Yamaguchi M, et al. A randomized comparison of modified intermediate-dose Ara-C vs high-dose Ara-C in postremission therapy for acute myeloid leukemia. Anticancer Res. 2012;32:643–7.
Burnett AK, Russell NH, Hills RK, et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol. 2013;31:3360–8.
Löwenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364:1027–36.
Hengeveld M, Suciu S, Karrasch M, et al. Intensive consolidation therapy compared with standard consolidation and maintenance therapy for adults with acute myeloid leukemia aged between 46 and 60 years: final results of the randomized phase III study (AML 8B) of the European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) leukemia cooperative groups. Ann Hematol. 2012;91:825–35.
Miyawaki S, Ohtake S, Fujisawa S, et al. A randomized comparison of 4 courses of standard-dose multi-agent chemotherapy vs 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults. The JALSG AML201 study. Blood. 2011;117:2366–72.
Thomas X, Elhamri M, Raffoux E, et al. Comparison of high-dose cytarabine and timed sequential chemotherapy as consolidation for younger adults with AML in first remission: the ALFA-9802 study. Blood. 2011;118:1754–62.
Fopp M, Fey MF, Bacchi M, et al. Post-remission therapy of adult acute myeloid leukemia: one cycle of high-dose vs standard-dose cytarabine. Leukaemia Project Group of the Swiss Group for Clinical Cancer Research (SAKK). Ann Oncol. 1997;8:251–7.
Schaich M, Rollig C, Soucek S, et al. Cytarabine dose of 36 g/m(2) compared with 12 g/m(2) within first consolidation in acute myeloid leukemia: results of patients enrolled onto the prospective randomized AML96 study. J Clin Oncol. 2011;29:2696–702.
Moore JO, George SL, Dodge RK, et al. Sequential multi-agent chemotherapy is not superior to high-dose cytarabine alone as postremission intensification therapy for acute myeloid leukemia in adults under 60 years of age. Cancer and Leukemia Group B study 9222. Blood. 2005;105:3420–7.
Bradstock KF, Matthews JP, Lowenthal RM, et al. A randomized trial of high-vs conventional-dose cytarabine in consolidation chemotherapy for adult de novo acute myeloid leukemia in first remission after induction therapy containing high-dose cytarabine. Blood. 2005;105:481–8.
Elonen E, Almqvist A, Hanninen A, et al. Comparison between four and eight cycles of intensive chemotherapy in adult myeloid leukemia: a randomized trial of the Finnish Leukemia Group. Leukemia. 1998;12:1041–8.
Cassileth PA, Harrington DP, Appelbaum FR, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med. 1998;339:1649–56.
Messerer D, Engel J, Hasford J, et al. impact of different postremission strategies on quality of life in patients with acute myeloid leukemia. Haematologica. 2008;93:826–33.
Visani G, Olivieri A, Malagola M, et al. Consolidation therapy for adult acute myeloid leukemia: a systematic analysis according to evidence based medicine. Leuk Lymphoma. 2006;47:1091–102.
Wang J, Ouyang J, Zhou R, et al. Autologous hematopoietic stem cell transplantation for acute myeloid leukemia in first complete remission: a meta-analysis of randomized trials. Acta Haematol. 2010;124:61–71.
Bug G, Koschmieder S, Krauter J, et al. Long-term results of a prospective randomized trial evaluating G-CSF priming in intensive induction chemotherapy followed by autologous stem cell transplantation in elderly patients with acute myeloid leukemia. Ann Hematol. 2014;93:193–202.
Schlenk RF, Pasquini MC, Pérez WS, et al. HLA-identical sibling allogeneic transplants vs chemotherapy in acute myelogenous leukemia with t(8;21) in first complete remission: collaborative study between the German AML Intergroup and CIBMTR. Biol Blood Marrow Transplant. 2008;14:187–96.
Koreth J, Schlenk R, Kopecky KJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301:2349–61.
Stelljes M, Beelen DW, Braess J, et al. Allogeneic transplantation as postremission therapy for cytogenetically high-risk acute myeloid leukemia: landmark analysis from a single prospective multicenter trial. Haematologica. 2011;96:972–9.
Pratcorona M, Brunet S, Nomdedéu J, et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to postremission therapy. Blood. 2013;121:2734–8.
Hu B, Vikas P, Mohty M, Savani BN. Allogeneic stem cell transplantation and targeted therapy for FLT3/ITD+ acute myeloid leukemia: an update. Expert Rev Hematol. 2013;7:301–15.
Farag SS, Maharry K, Zhang MJ, et al. Comparison of reduced-intensity hematopoietic cell transplantation with chemotherapy in patients age 60-70 years with acute myelogenous leukemia in first remission. Biol Blood Marrow Transplant. 2011;17:1796–803.
Ustun C, Lazarus HM, Weisdorf D. To transplant or not: a dilemma for treatment of elderly AML patients in the twenty-first century. Bone Marrow Transplant. 2013;48:1497–505.
Sproat L, Bolwell B, Rybicki L, et al. Effect of postremission chemotherapy preceding allogeneic hematopoietic cell transplant in patients with acute myeloid leukemia in first remission. Leuk Lymphoma. 2010;51:1699–704.
Warlick ED, Paulson K, Brazauskas R, et al. Effect of postremission therapy before reduced-intensity conditioning allogeneic transplantation for acute myeloid leukemia in first complete remission. Biol Blood Marrow Transplant. 2013;20:202–8.
Wiernik PH, Holland JF, Glidewell O, et al. Is bone marrow transplantation the best treatment for a patient with acute nonlymphocytic leukemia in remission? 1980 [Personal communication].
Burnett AK, Goldstone A, Hills RK, et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol. 2013;31:1293–301. The paper demonstrates that postponing transplantation until relapse is prudent.
Stelljes M, Beelen DW, Braess J, et al. Allogeneic transplantation vs chemotherapy as postremission therapy for acute myeloid leukemia: a prospective matched pairs analysis. J Clin Oncol. 2014;2:158–60.
Peterson BA, Bloomfield CD. Prolonged maintained remissions of adult acute nonlymphocytic leukaemia. Lancet. 1977;2:158–60.
Büchner T, Urbanitz D, Hiddemann W, et al. Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): two multi-center studies of the German AML Cooperative Group. J Clin Oncol. 1985;3:1583–9.
Büchner T, Hiddemann W, Schaefer UW, et al. Combined effect of very early intensification and prolonged postremission chemotherapy in patients with AML. Leukemia. 1992;6 Suppl 4:68–70.
Büchner T, Hiddemann W, Wörmann B, et al. Long-term effects of prolonged maintenance and of very early intensification chemotherapy in AML: data from AMLCG. Leukemia. 1992;6 Suppl 2:68–71.
Büchner T, Hiddemann W, Wörmann B, et al. Acute myeloid leukemia in adults: is postconsolidation maintenance therapy necessary ? Int J Hematol. 2000;72:285–9.
Dutcher JP, Wiernik PH, Markus S, et al. Intensive maintenance therapy improves survival in adult acute nonlymphocytic leukemia: an eight-year follow-up. Leukemia. 1988;2:413–9.
Dutcher JP, Wiernik PH, Markus S, et al. 15 year follow-up of adult patients with acute myeloid leukemia: Study BCRC 7802. Proc XXV Congress Int Soc Hematology. 1994; [Abstract #48].
Urbanitz D, Büchner T, Pielken H, et al. Neuraminidase-treated allogeneic blasts for maintenance in acute myelogenous leukemia: results of a prospective randomized trial. Haematol Blood Transfus. 1987;30:64–8.
Baer MR. Is there a role for maintenance therapy in acute myeloid leukemia? Best Prac Res Clin Haematol. 2009;22:517–21.
Rosenblat TL, Jurcic JG. Induction and postremission strategies in acute myeloid leukemia: state of the art and future directions. Hematol Oncol Clin North Am. 2011;25:1189–213.
Stone RM. Is it time to revisit standard postremission therapy? Best Pract Res Clin Haematol. 2012;25:437–41. A thoughtful discussion.
Ganzel C, Douer D, Tallman MS. Postconsolidation maintenance and monitoring in patients with acute promyelocytic leukemia. J Nat Compr Cancer Netw. 2013;11:1512–21.
Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337:1021–8.
Wiernik PH, Dutcher JP, Todd M, et al. Polyethylene glycolated interleukin-2 as maintenance therapy for acute myelogenous leukemia in second remission. Am J Hematol. 1994;47:41–4.
Meloni G, Vignetti M, Andrizzi C, et al. Interleukin-2 for the treatment of advanced acute myelogenous leukemia patients with limited disease: updated experience with 20 cases. Leuk Lymphoma. 1996;21:429–35.
Meloni G, Trisolini SM, Capria S, et al. How long can we give interleukin-2? Clinical and immunologic evaluation of AML patients after 10 or more years of IL2 administration. Leukemia. 2002;16:2016–8.
Speletas M, Ritis K, Bourikas G. Achievement and maintenance of complete remission in a patient with acute myelogenous leukemia after weekly administration of interleukin-2. Haematologica. 1996;81:346–8.
Maraninchi D, Vey N, Viens P, et al. A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma. 1998;31:343–9.
Cortes JE, Kantarjian HM, O’Brien S, et al. A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission. Cancer. 1999;85:1506–13.
Stein AS, O’Donnell MR, Slovak ML, et al. Interleukin-2 after autologous stem-cell transplantation for adult patients with acute myeloid leukemia in first complete remission. J Clin Oncol. 2003;21:615–23.
Stone RM, DeAngelo DJ, Janosova A, et al. Low dose interleukin-2 following intensification therapy with high dose cytarabine for acute myelogenous leukemia in first complete remission. Am J Hematol. 2008;83:771–7.
Baer MR, George SL, Caliguri MA, et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B study 9720. J Clin Oncol. 2008;26:4934–9.
Kolitz JE, George SL, Benson DM Jr, et al. Recombinant interleukin-2 in patients aged younger than 60 years with acute myeloid leukemia in first complete remission: results from Cancer and Leukemia Group B 19808. Cancer. 2014;120:1010–7.
Pautas C, Merabet F, Thomas X, et al. Randomized study of intensified anthracycline doses for induction and recombinant interleukin-2 for maintenance in patients with acute myeloid leukemia age 50 to 70 years: results of the ALFA-9801 study. J Clin Oncol. 2010;28:808–14.
Buyse M, Squifflet P, Lange BJ, et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood. 2011;117:7007–13.
Gutbrodt KL, Schliemann C, Giovannoni L, et al. Antibody-based delivery of interleukin-2 to neovascular has potent activity against acute myeloid leukemia. Sci Transl Med. 2013;5:201.
Martner A, Thorén FB, Aurelius J, Hellstrand K. Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Rev. 2013;27:209–16.
Brune M, Castaigne S, Catalano J, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood. 2006;108:88–96.
Buyse M, Michiels S, Squifflet P, et al. Leukemia-free survival as a surrogate end point for overall survival in the evaluation of maintenance therapy for patients with acute myeloid leukemia in complete remission. Haematologica. 2011;96:1106–12.
Berry SM, Broglio KR, Berry DA. Addressing the incremental benefit of histamine dihydrochloride when added to interleukin-2 in treating acute myeloid leukemia: a Bayesian meta-analysis. Cancer Invest. 2011;29:293–9.
Thorén FB, Romero AI, Brune M, Hellstrand K. Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation immunotherapy in acute myeloid leukemia. Expert Opin Biol Ther. 2009;9:1217–23.
Romero AI, Thorén FB, Aurelius J, et al. Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML. Scand J Immunol. 2009;70:194–205.
Martner A, Thorén FB, Aurelius J, et al. Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia. Expert Rev Hematol. 2010;3:381–91.
Yang LP, Perry CM. Histamine dihydrochloride: in the management of acute myeloid leukaemia. Drugs. 2011;71:109–22.
Yang LP, Perry CM. Spotlight on histamine dihydrochloride in acute myeloid leukaemia. Drugs Aging. 2011;28:325–9.
Aurelius J, Martner A, Brune M, et al. Remission maintenance in acute myeloid leukemia: impact of functional histamine H2 receptors expressed by leukemic cells. Haematologica. 2012;97:1904–8.
Levi JA, Wiernik PH. A comparative clinical trial of 5-azacitidine and guanazole in previously treated adults with acute nonlymphocytic leukemia. Cancer. 1976;38:36–41.
Tawfik B, Sliesoraitis S, Lyerly S, et al. Efficacy of the hypomethylating agents as frontline, salvage, or consolidation therapy in adults with acute myeloid leukemia (AML). Ann Hematol. 2014;93:47–55.
Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML 15 trial. J Clin Oncol. 2011;29:369–77.
Amadori S, Suciu S, Stasi R, et al. Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J Clin Oncol. 2013;31:4424–30.
Jacoby MA, Martin MG, Uy GL, et al. Phase I study of oral clofarabine consolidation in adults aged 60 and older with acute myeloid leukemia. Am J Hematol. 2014;89:487–92.
Claxton D, Erba HP, Faderl S, et al. Outpatient consolidation treatment with clofarabine in a phase 2 study of older adult patients with previously untreated acute myelogenous leukemia. Leuk Lymphoma. 2012;53:435–40.
Chen Y, Borthakur G. Lenalidomide as a novel treatment of acute myeloid leukemia. Expert Opin Investig Drugs. 2013;22:389–97.
Sockel K, Bornhaeuser M, Mischak-Weissinger E, et al. Lenalidomide maintenance after allogeneic HSCT seems to trigger acute graft-vs-host disease in patients with high-risk myelodysplastic syndromes or acute myeloid leukemia and del(5q): results of the LENAMAINT trial. Haematologica. 2012;97:e34–5.
Hourigan CS, McCarthy P, de Lima M. Back to the future! The evolving role of maintenance therapy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20:154–63.
Stone RM. Should the presence of minimal residual disease (MRD) in morphologic complete remission alter postremission strategy in AML? Best Pract Res Clin Haematol. 2011;24:509–14.
Freeman SD, Virgo P, Couzens S, et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol. 2013;31:4123–31. It is still not clear how to respond to the observation of minimal residual disease, but it is of paramount importance to study this question.
Compliance with Ethics Guidelines
Conflict of Interest
Peter H. Wiernik declares that he has no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wiernik, P.H. Optimal Therapy for Adult Patients with Acute Myeloid Leukemia in First Complete Remission. Curr. Treat. Options in Oncol. 15, 171–186 (2014). https://doi.org/10.1007/s11864-014-0281-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11864-014-0281-9