Skip to main content

Advertisement

Log in

Novel Therapies for the Treatment of Advanced Prostate Cancer

  • Genitourinary Cancer (R Pili, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

In recent years, great success has been achieved on many fronts in the treatment of men with metastatic castration-resistant prostate cancer (CRPC), including novel chemotherapeutics, immunotherapies, bone microenvironment-targeted agents, and hormonal therapies. Numerous agents are currently in early-phase clinical trial development for the treatment of advanced prostate cancer. These novel therapies target several areas of prostate tumor biology, including the upregulation of androgen signaling and biosynthesis, critical oncogenic intracellular pathways, epigenetic alterations, and cancer immunology. Importantly, the characterization of the prostate cancer genome offers the potential to exploit conserved genetic alterations, which may increase the efficacy of these targeted therapies. Predictive and prognostic biomarkers are urgently needed to maximize therapeutic efficacy and safety of these promising new treatments options in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43. Characterizes common mutations found in exomes of prostate cancer.

    Article  PubMed  CAS  Google Scholar 

  2. Friedlander TW, Roy R, Tomlins SA, et al. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer. Cancer Res. 2012;72:616–25. Describes comprehensive gene methylation and copy number alterations in prostate cancer.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22. Defines the prostate cancer transcriptome and profile copy number alteration involved in many oncogenic pathways.

    Article  PubMed  CAS  Google Scholar 

  4. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  PubMed  CAS  Google Scholar 

  5. de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376:1147–54.

    Article  PubMed  Google Scholar 

  6. de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.

    Article  PubMed  Google Scholar 

  7. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.

    Article  PubMed  CAS  Google Scholar 

  8. Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012.

  9. Chou R, Dana T, Bougatsos C, et al. In: Treatments for localized prostate cancer: systematic review to update the 2002 US preventive services task force recommendation. Rockville (MD); 2011.

  10. Lu-Yao GL, Albertsen PC, Moore DF, et al. Outcomes of localized prostate cancer following conservative management. JAMA. 2009;302:1202–9.

    Article  PubMed  CAS  Google Scholar 

  11. Seidenfeld J, Samson DJ, Hasselblad V, et al. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med. 2000;132:566–77.

    PubMed  CAS  Google Scholar 

  12. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol. 2011;29:3659–68.

    Article  PubMed  CAS  Google Scholar 

  13. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  PubMed  CAS  Google Scholar 

  14. Klezovitch O, Risk M, Coleman I, et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA. 2008;105:2105–10.

    Article  PubMed  Google Scholar 

  15. Cai C, Wang H, Xu Y, Chen S, Balk SP. Reactivation of androgen receptor-regulated TMPRSS2: ERG gene expression in castration-resistant prostate cancer. Cancer Res. 2009;69:6027–32.

    Article  PubMed  CAS  Google Scholar 

  16. Perner S, Demichelis F, Beroukhim R, et al. TMPRSS2: ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66:8337–41.

    Article  PubMed  CAS  Google Scholar 

  17. Mohler JL, Gregory CW, Ford 3rd OH, et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res. 2004;10:440–8.

    Article  PubMed  CAS  Google Scholar 

  18. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.

    Article  PubMed  Google Scholar 

  19. Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009;15:4799–805.

    Article  PubMed  CAS  Google Scholar 

  20. Saylor PJ, Armstrong AJ, Fizazi K, et al. New and emerging therapies for bone metastases in genitourinary cancers. Eur Urol 2012.

  21. Ryan CJ, Smith MR, De Bono JS, et al. Interim analysis (IA) results of COU-AA-302, a randomized, phase III study of abiraterone acetate (AA) in chemotherapy-naive patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). ASCO Meeting Abstracts 2012;30:LBA4518.

    Google Scholar 

  22. Tran C, Ouk S, Clegg NJ, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324:787–90.

    Article  PubMed  CAS  Google Scholar 

  23. Clegg NJ, Wongvipat J, Joseph JD, et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 2012;72:1494–503.

    Article  PubMed  CAS  Google Scholar 

  24. Rathkopf DE DD, Morris MJ, Slovin SF, Steinbrecher JE, Arauz G, Rix PJ, Maneval EC, Chen I, Fox JJ, Fleisher M, Larson SM, Scher HI. Phase I/II safety and pharmacokinetic (PK) study of ARN-509 in patients with metastatic castration-resistant prostate cancer (mCRPC): Phase I results of a Prostate Cancer Clinical Trials Consortium study. J Clin Oncol 2012.

  25. Abstract LBA25. In: 2012 European Society for Medical Oncology (ESMO) Congress Presented September 30, 2012; 2012 European Society for Medical Oncology (ESMO) Congress.

  26. Andersen RJ, Mawji NR, Wang J, et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell. 2010;17:535–46. Novel mechanism of action in targeting the N-termainal domain of the AR.

    Article  PubMed  CAS  Google Scholar 

  27. Sadar MD. Small molecule inhibitors targeting the "achilles' heel" of androgen receptor activity. Cancer Res. 2011;71:1208–13.

    Article  PubMed  CAS  Google Scholar 

  28. Hu R, Lu C, Mostaghel EA, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012;72:3457–62.

    Article  PubMed  CAS  Google Scholar 

  29. Mostaghel EA, Marck BT, Plymate SR, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 2011;17:5913–25.

    Article  PubMed  CAS  Google Scholar 

  30. Stanbrough M, Bubley GJ, Ross K, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66:2815–25.

    Article  PubMed  CAS  Google Scholar 

  31. Montgomery RB, Mostaghel EA, Vessella R, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54.

    Article  PubMed  CAS  Google Scholar 

  32. Kaku T, Hitaka T, Ojida A, et al. Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorg Med Chem. 2011;19:6383–99.

    Article  PubMed  CAS  Google Scholar 

  33. Antonarakis ES, Armstrong AJ. Emerging therapeutic approaches in the management of metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:206–18.

    Article  PubMed  CAS  Google Scholar 

  34. Ryan C, Li J, Kheoh T, Scher HI, Molina A. Abstract LB-434: Baseline serum adrenal androgens are prognostic and predictive of overall survival (OS) in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC): Results of the COU-AA-301 phase 3 randomized trial. Cancer Res 2012;72:LB-434.

  35. Bruno RD, Vasaitis TS, Gediya LK, et al. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids. 2011;76:1268–79.

    Article  PubMed  CAS  Google Scholar 

  36. Robert B. Montgomery, Eisenberger MA, Rettig M, Chu F, Pili R, Stephenson J, Vogelzang NJ, Morrison J, Taplin M-E. Phase I clinical trial of galeterone (TOK-001), a multifunctional antiandrogen and CYP17 inhibitor in castration resistant prostate cancer (CRPC). J Clin Oncol 2012.

  37. Zoubeidi A, Zardan A, Beraldi E, et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res. 2007;67:10455–65.

    Article  PubMed  CAS  Google Scholar 

  38. Chi KN, Hotte SJ, Ellard S, et al. A randomized phase II study of OGX-427 plus prednisone (P) versus P alone in patients (pts) with metastatic castration resistant prostate cancer (CRPC). ASCO Meeting Abstracts 2012;30:4514.

    Google Scholar 

  39. Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308.

    Article  PubMed  CAS  Google Scholar 

  40. Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer. 2010;46:1260–70.

    Article  PubMed  CAS  Google Scholar 

  41. Takayama H, LaRochelle WJ, Sharp R, et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA. 1997;94:701–6.

    Article  PubMed  CAS  Google Scholar 

  42. Hussain M, Smith MR, Sweeney C, et al. Cabozantinib (XL184) in metastatic castration-resistant prostate cancer (mCRPC): Results from a phase II randomized discontinuation trial. ASCO Meeting Abstracts 2011;29:4516. Highlights the clinical efficacy of targeting MET in prostate cancer.

  43. Smith MR, Sweeney C, Rathkopf DE, et al. Cabozantinib (XL184) in chemotherapy-pretreated metastatic castration resistant prostate cancer (mCRPC): Results from a phase II nonrandomized expansion cohort (NRE). ASCO Meeting Abstracts 2012;30:4513.

    Google Scholar 

  44. Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86. Describes the interplay between PI3K and AR.

    Article  PubMed  CAS  Google Scholar 

  45. Mulholland DJ, Tran LM, Li Y, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19:792–804.

    Article  PubMed  CAS  Google Scholar 

  46. Mayer EL, Krop IE. Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin Cancer Res. 2010;16:3526–32.

    Article  PubMed  CAS  Google Scholar 

  47. Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J. SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin Cancer Res. 2009;15:3540–9.

    Article  PubMed  CAS  Google Scholar 

  48. Yu EY, Massard C, Gross ME, et al. Once-daily dasatinib: expansion of phase II study evaluating safety and efficacy of dasatinib in patients with metastatic castration-resistant prostate cancer. Urology. 2011;77:1166–71.

    Article  PubMed  Google Scholar 

  49. Araujo JC, Mathew P, Armstrong AJ, et al. Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1–2 study. Cancer. 2012;118:63–71.

    Article  PubMed  CAS  Google Scholar 

  50. Zoubeidi A, Chi K, Gleave M. Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clin Cancer Res. 2010;16:1088–93.

    Article  PubMed  CAS  Google Scholar 

  51. Chi KN, Hotte SJ, Yu EY, et al. Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28:4247–54.

    Article  PubMed  CAS  Google Scholar 

  52. Saad F, Hotte S, North S, et al. Randomized phase II trial of Custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res. 2011;17:5765–73.

    Article  PubMed  CAS  Google Scholar 

  53. Brenner JC, Ateeq B, Li Y, et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19:664–78.

    Article  PubMed  CAS  Google Scholar 

  54. Gulley JL, Drake CG. Immunotherapy for prostate cancer: recent advances, lessons learned, and areas for further research. Clin Cancer Res. 2011;17:3884–91.

    Article  PubMed  CAS  Google Scholar 

  55. DiPaola RS, Plante M, Kaufman H, et al. A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J Transl Med. 2006;4:1.

    Article  PubMed  CAS  Google Scholar 

  56. Kantoff PW, Schuetz TJ, Blumenstein BA, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28:1099–105.

    Article  PubMed  CAS  Google Scholar 

  57. May Jr KF, Gulley JL, Drake CG, Dranoff G, Kantoff PW. Prostate cancer immunotherapy. Clin Cancer Res. 2011;17:5233–8.

    Article  PubMed  CAS  Google Scholar 

  58. Slovin SF, Hamid O, Tejwani S, et al. Ipilimumab (IPI) in metastatic castrate-resistant prostate cancer (mCRPC): Results from an open-label, multicenter phase I/II study. ASCO Meeting Abstracts 2012;30:25.

  59. Dewan MZ, Galloway AE, Kawashima N. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379–88. Demonstrates the efficacy of PD-1 inhibition as an effective anti-tumor agent.

    Article  PubMed  CAS  Google Scholar 

  60. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    Article  PubMed  CAS  Google Scholar 

  61. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  PubMed  CAS  Google Scholar 

  62. Kallberg E, Vogl T, Liberg D, et al. S100A9 interaction with TLR4 promotes tumor growth. PLoS One. 2012;7:e34207.

    Article  PubMed  Google Scholar 

  63. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.

    Article  PubMed  CAS  Google Scholar 

  64. Olsson A, Bjork A, Vallon-Christersson J, Isaacs JT, Leanderson T. Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer. 2010;9:107.

    Article  PubMed  Google Scholar 

  65. Pili R, Haggman M, Stadler WM, et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29:4022–8. Illustrates importance of manipulating tumor microenvironment.

    Article  PubMed  CAS  Google Scholar 

  66. Perry AS, Watson RW, Lawler M, Hollywood D. The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol. 2010;7:668–80.

    Article  PubMed  CAS  Google Scholar 

  67. Berger MF, Lawrence MS, Demichelis F, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20.

    Article  PubMed  CAS  Google Scholar 

  68. Zorn CS, Wojno KJ, McCabe MT, Kuefer R, Gschwend JE, Day ML. 5-aza-2'-deoxycytidine delays androgen-independent disease and improves survival in the transgenic adenocarcinoma of the mouse prostate mouse model of prostate cancer. Clin Cancer Res. 2007;13:2136–43.

    Article  PubMed  CAS  Google Scholar 

  69. Welsbie DS, Xu J, Chen Y, et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 2009;69:958–66.

    Article  PubMed  CAS  Google Scholar 

  70. Bradley D, Rathkopf D, Dunn R, et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer. 2009;115:5541–9.

    Article  PubMed  CAS  Google Scholar 

  71. Ferrari AC, Stein MN, Alumkal JJ, et al. A phase I/II randomized study of panobinostat and bicalutamide in castration-resistant prostate cancer (CRPC) patients progressing on second-line hormone therapy. ASCO Meeting Abstracts 2011;29:156.

    Google Scholar 

  72. Rathkopf D, Wong BY, Ross RW, et al. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2010;66:181–9.

    Article  PubMed  CAS  Google Scholar 

  73. Sonpavde G, Aparicio AM, Delaune R, et al. Azacitidine for castration-resistant prostate cancer progressing on combined androgen blockade. ASCO Meeting Abstracts 2008;26:5172.

    Google Scholar 

  74. Verheul HM, Qian DZ, Carducci MA, Pili R. Sequence-dependent antitumor effects of differentiation agents in combination with cell cycle-dependent cytotoxic drugs. Cancer Chemother Pharmacol. 2007;60:329–39.

    Article  PubMed  CAS  Google Scholar 

  75. Armstrong AJ, Marengo MS, Oltean S, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.

    Article  PubMed  CAS  Google Scholar 

  76. Sun Y, Wang BE, Leong KG, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72:527–36.

    Article  PubMed  CAS  Google Scholar 

  77. Kottke T, Errington F, Pulido J, et al. Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nat Med. 2011;17:854–9.

    Article  PubMed  CAS  Google Scholar 

  78. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  PubMed  CAS  Google Scholar 

  79. Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–59.

    Article  PubMed  CAS  Google Scholar 

  80. Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012.

  81. Mulholland DJ, Kobayashi N, Ruscetti M, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72:1878–89.

    Article  PubMed  CAS  Google Scholar 

  82. Shiota M, Zardan A, Takeuchi A, et al. Clusterin mediates TGF-beta-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res 2012.

  83. Wu K, Zeng J, Li L, et al. Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncol Rep. 2010;23:1545–52.

    Article  PubMed  CAS  Google Scholar 

  84. Tanaka H, Kono E, Tran CP, et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010;16:1414–20.

    Article  PubMed  CAS  Google Scholar 

  85. Singh RP, Raina K, Sharma G, Agarwal R. Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res. 2008;14:7773–80.

    Article  PubMed  CAS  Google Scholar 

  86. LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17:2502–11.

    Article  PubMed  CAS  Google Scholar 

  87. Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366:2171–9.

    Article  PubMed  CAS  Google Scholar 

  88. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22:373–88.

    Article  PubMed  CAS  Google Scholar 

  89. Kelly WK, Halabi S, Carducci M, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30:1534–40.

    Article  PubMed  CAS  Google Scholar 

  90. Ou Y, Michaelson MD, Sengelov L, et al. Randomized, placebo-controlled, phase III trial of sunitinib in combination with prednisone (SU + P) versus prednisone (P) alone in men with progressive metastatic castration-resistant prostate cancer (mCRPC). ASCO Meeting Abstracts 2011;29:4515.

    Google Scholar 

  91. Agarwal N, Sonpavde G, Sternberg CN. Novel molecular targets for the therapy of castration-resistant prostate cancer. Eur Urol. 2012;61:950–60.

    Article  PubMed  CAS  Google Scholar 

  92. Armstrong AJ, Eisenberger MA, Halabi S, et al. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol. 2012;61:549–59.

    Article  PubMed  CAS  Google Scholar 

  93. Bryant RJ, Pawlowski T, Catto JW, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.

    Article  PubMed  CAS  Google Scholar 

  94. Armstrong AJ, George DJ, Halabi S. Serum lactate dehydrogenase predicts for overall survival benefit in patients with metastatic renal cell carcinoma treated with inhibition of Mammalian target of rapamycin. J Clin Oncol. 2012;30:3402–7. First predictive biomarker in GU oncology.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

J.M. Clarke: none. A.J. Armstrong: Consultancy for Amgen, Active Biotech/Ipsen, Sanofi Aventis, Dendreon, BMS, and Bayer, received honoraria from Sanofi Aventis, Dendreon, Pfizer, and Janssen, received payment for development of educational presentations from Dendreon, Sanofi Aventis, Janssen, and Pfizer, and had travel/accommodations expenses covered or reimbursed from Active Biotech, Dendreon, Sanofi Aventis, Pfizer, BMS, and Bayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Armstrong MD, ScM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J.M., Armstrong, A.J. Novel Therapies for the Treatment of Advanced Prostate Cancer. Curr. Treat. Options in Oncol. 14, 109–126 (2013). https://doi.org/10.1007/s11864-012-0222-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-012-0222-4

Keywords

Navigation