Skip to main content

Advertisement

Log in

Cutaneous T-Cell Lymphomas: A Review of New Discoveries and Treatments

  • Lymphomas (L Gordon, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Treatment regimens of patients with CTCL vary widely based on clinician preference and patient tolerance. Skin directed therapies are recommended for patients with early stage IA and IB MF, with combinations used in refractory cases. While no regimen has been proven to prolong survival in advanced stages, immunomodulatory regimens should be used initially to reduce the need for cytotoxic therapies. In more advanced stages of disease, treatment efforts should strive for palliation and improvement of quality of life. With many new therapies and strategies on the horizon, the future looks promising for CTCL patients. Unfortunately, other than allogeneic HCT, there are no potential curative therapies for CTCL. Clinical trials are currently underway to identify new therapies to improve quality of life for patients, and researchers are hard at work to identify novel pathways and genes for prognostication and as targets for therapies. Importantly, collaborative clinical trials to enhance rates of accrual need to be conducted, and improved interpretation of data via standardizing end points and response criteria should be an emphasis. Recently, the International Society for Cutaneous Lymphomas (ISCL), the United States Cutaneous Lymphoma Consortium (USCLC), and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer (EORTC) met to develop consensus guidelines to facilitate collaboration on clinical trials. These proposed guidelines consist of: recommendations for standardizing general protocol design; a scoring system for assessing tumor burden in skin, lymph nodes, blood, and viscera; definition of response in skin, nodes, blood, and viscera; a composite global response score; and a definition of end points. Although these guidelines were generated by consensus panels, they have not been prospectively or retrospectively validated through analysis of large patient cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Readings

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bradford P, Devesa S, Anderson W, et al. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113(21):5064–73.

    Article  PubMed  CAS  Google Scholar 

  2. Weinstock MA, Gardstein B. Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. Am J Public Health. 1999;89:1240–4.

    Article  PubMed  CAS  Google Scholar 

  3. Arulogun SO, Prince HM, Ng J, et al. Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation. Blood. 2008;112:3082–7.

    Article  PubMed  CAS  Google Scholar 

  4. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.

    Article  PubMed  CAS  Google Scholar 

  5. Jones D, Dang NH, Duvic M, Washington LT, Huh YO. Absence of CD26 expression is a useful marker fordiagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol. 2001;115(6):885–92.

    Article  PubMed  CAS  Google Scholar 

  6. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cellsby enhanced recruitment of effector T cells. Int Immunol. 2005;17(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  7. Samimi S, Benoit B, Evans K, et al. Increased programmed death-1 expression on CD4+ T cells in cutaneous T-cell lymphoma: implications for immune suppression. Arch Dermatol. 2010;146(12):1382–8.

    Article  PubMed  CAS  Google Scholar 

  8. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumorcells by enhanced recruitment of effector T cells. Int Immunol. 2005;17(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  9. Pui JC, Allman D, Xu L, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999;11(3):299–308.

    Article  PubMed  CAS  Google Scholar 

  10. Kamstrup MR, Gjerdrum LM, Biskup E, et al. Notch1 as a potential therapeutic target in cutaneous T-cell lymphoma. Blood. 2010;116(14):2504–12.

    Article  PubMed  CAS  Google Scholar 

  11. Hu C, Dievart A, Lupien M, et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland developmentand induces mammary tumors. Am J Pathol. 2006;168(3):973–90.

    Article  PubMed  CAS  Google Scholar 

  12. Pinnix CC, Lee JT, Liu ZJ, et al. Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 2009;69(13):5312–20.

    Article  PubMed  CAS  Google Scholar 

  13. Rosati E, Sabatini R, Rampino G, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113(4):856–65.

    Article  PubMed  CAS  Google Scholar 

  14. Wozniak MB, Tracey L, Ortiz-Romero PL. Psoralen plus ultraviolet A +/− interferon-alpha treatment resistance in mycosis fungoides: the role of tumour microenvironment, nuclear transcription factor-kappaB and T-cell receptor pathways. Br J Dermatol. 2009;160(1):92–102.

    Article  PubMed  CAS  Google Scholar 

  15. Li ZW, Dalton WS. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev. 2006;20:333–42.

    Article  PubMed  Google Scholar 

  16. Brender C, Nielsen M, Kaltoft K, et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001;97:1056–62.

    Article  PubMed  CAS  Google Scholar 

  17. Wu J, Nihal M, Siddiqui J, Vonderheid EC, Wood GS. Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol. 2009;129(5):1165–73.

    Article  PubMed  CAS  Google Scholar 

  18. Jones CL, Wain EM, Chu CC, et al. Downregulation of Fas gene expression in Sézary syndrome is associated with promoter hypermethylation. J Invest Dermatol. 2010;130(4):1116–25.

    Article  PubMed  CAS  Google Scholar 

  19. Wu J, Wood GS. Reduction of Fas/CD95 promoter methylation, upregulation of Fas protein, and enhancementof sensitivity to apoptosis in cutaneous T-cell lymphoma. Arch Dermatol. 2011;147(4):443–9.

    Article  PubMed  CAS  Google Scholar 

  20. Rovedo M, Krett N, Rosen S. Inhibition of Glycogen Synthase Kinase-3 Increases the Cytotoxicity of Enzastaurin. J Invest Dermatol. 2011;131:1442–9.

    Article  PubMed  CAS  Google Scholar 

  21. Querfeld C, Rizvi MA, Kuzel TM, et al. The selective protein kinase C beta inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J Invest Dermatol. 2006;126:1641–7.

    Article  PubMed  CAS  Google Scholar 

  22. Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006;42:1014–30.

    Article  PubMed  Google Scholar 

  23. van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sézary syndrome. Blood. 2009;113(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  24. Booken N, Gratchev A, Utikal J, et al. Sézary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3. Leukemia. 2008;22:393–9.

    Article  PubMed  CAS  Google Scholar 

  25. Vermeer MH, Van Doorn R, Dijkman R, et al. Novel and highly recurrent chromosomal alterations in Sézary syndrome. Cancer Res. 2008;68:2689–98.

    Article  PubMed  CAS  Google Scholar 

  26. Campbell JJ, Clark RA, Watanabe R, et al. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71.

    Article  PubMed  CAS  Google Scholar 

  27. Laharanne E, Oumouhou N, Bonnet F, et al. Genome-Wide Analysis of Cutaneous T-Cell Lymphomas Identifies Three Clinically Relevant Classes. J Invest Dermatol. 2010;130(6):1707–18.

    Article  PubMed  CAS  Google Scholar 

  28. Laharanne E, Chevret E, Idrissi Y, et al. CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol. 2010;23(4):547–58.

    Article  PubMed  CAS  Google Scholar 

  29. Navas IC, Ortiz-Romero PL, Villuendas R, et al. p16(INK4a) gene alterations are frequent in lesions of mycosis fungoides. Am J Pathol. 2000;156:1565–72.

    Article  PubMed  CAS  Google Scholar 

  30. Carbone A, Bernardini L, Valenzano F, et al. Array-based comparative genomic hybridization in early-stage mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A, SMAC/DIABLO, and RHOF. Genes Chromosomes Cancer. 2008;47:1067–75.

    Article  PubMed  CAS  Google Scholar 

  31. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  PubMed  CAS  Google Scholar 

  32. Nevala H, Karenko L, Vakeva L, Ranki A. Proapoptotic and antiapoptotic markers in cutaneous T-cell lymphoma skin infiltrates and lymphomatoid papulosis. Br J Dermatol. 2001;145:928–37.

    Article  PubMed  CAS  Google Scholar 

  33. Klemke CD, Brenner D, Weiss EM, et al. Lack of T-Cell receptor–induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-Cell lymphoma cells from activation-induced cell death. Cancer Res. 2009;69(10):4175–83. Epub 2009 May 12.

    Article  PubMed  CAS  Google Scholar 

  34. Litvinov IV, Jones DA, Sasseville D, et al. Transcriptional profiles predict disease outcome in patients with cutaneous T-cell lymphoma. Clin Cancer Res. 2010;16(7):2106–14. Epub 2010 Mar 16.

    Article  PubMed  CAS  Google Scholar 

  35. Lansigan F, Foss F. Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs. 2010;70(3):273–86.

    Article  PubMed  CAS  Google Scholar 

  36. Querfeld C, Rosen S, Kuzel T, et al. Long-term follow-up of patients with early-stage cutaneous T-Cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol. 2005;141:305–11.

    Article  PubMed  Google Scholar 

  37. Herrmann JJ, Roenigk Jr HH, Hönigsmann H. Ultraviolet radiation for treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9:1077–88.

    PubMed  CAS  Google Scholar 

  38. Hönigsmann H, Tanew A. Photo(chemo)therapy for cutaneous T-cell lymphoma. In: Krutmann J, Hönigsmann H, Elmets CA, editors. Dermatologic phototherapy and photodiagnostic methods. 2nd ed. Heidelberg: Springer; 2009. p. 135–49.

    Chapter  Google Scholar 

  39. Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006;42:1014–30.

    Article  PubMed  Google Scholar 

  40. Trautinger F. Phototherapy of mycosis fungoides. Photodermatol Photoimmunol Photomed. 2011;27(2):68–74.

    Article  PubMed  Google Scholar 

  41. Rosen ST, Querfeld C, Kuzel TM, Guitart J. Cutaneous T-Cell lymphomas: a guide for the community oncologist, 2nd edn. 2008.

  42. Zackheim HS, Kashani-Sabet M, Amin S. Topical corticosteroids for mycosis fungoides: experience in 79 patients. Arch Dermatol. 1998;134(8):949–54.

    Article  PubMed  CAS  Google Scholar 

  43. Kim YH, Martinez G, Varghese A, et al. Topical nitrogen mustard in the management of mycosis fungoides: update of the Stanford experience. Arch Dermatol. 2003;139(2):165–73.

    Article  PubMed  CAS  Google Scholar 

  44. Zackheim HS, Cutaneous T. cell lymphoma: update of treatment. Dermatology. 1999;199:102–5.

    Article  PubMed  CAS  Google Scholar 

  45. Abbott RA, Whittaker SJ, Morris SL, et al. Bexarotene therapy for mycosis fungoides and Sézary syndrome. Br J Dermatol. 2009;160(6):1299–307.

    Article  PubMed  CAS  Google Scholar 

  46. Heald P, Mehlmauer M, Martin AG, et al. Topical bexarotene treatment for patients with refractory or persistent early stage cutaneous T-cell lymphoma: results of the phase III clinical trial. J Am Acad Dermatol. 2003;49:801–15.

    Article  PubMed  Google Scholar 

  47. Breneman D, Duvic M, Kuzel T, et al. Phase 1 and 2 trial of bexarotene gel for skin-directed treatment of patients with cutaneous T-cell lymphoma. Arch Dermatol. 2002;138(3):325–32.

    Article  PubMed  CAS  Google Scholar 

  48. Apisarnthanarax N, Talpur R, Ward S, et al. Tazarotene 0.1% gel for refractory mycosis fungoides lesions: an open-label pilot study. J Am Acad Dermatol. 2004;50(4):600–7.

    Article  PubMed  Google Scholar 

  49. Navi D, Riaz N, Levin YS, Sullivan NC, et al. The Stanford University experience with conventional-dose, total skin electron-beam therapy in the treatment of generalized patch or plaque (T2) and tumor (T3) mycosis fungoides. Arch Dermatol. 2011;147(5):561–7.

    Article  PubMed  Google Scholar 

  50. Introcaso CE, Micaily B, Richardson SK, et al. Total skin electron beam therapy may be associated with improvement of peripheral blood disease in Sézary syndrome. J Am Acad Dermatol. 2008;58(4):592–5.

    Article  PubMed  Google Scholar 

  51. Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19(9):2456–71.

    PubMed  CAS  Google Scholar 

  52. Assaf C, Bagot M, Dummer R. Minimizing adverse side-effects of oral bexarotene in cutaneous T-cell lymphoma: an expert opinion. Br J Dermatol. 2006;155:261–6.

    Article  PubMed  CAS  Google Scholar 

  53. Gorgun G, Foss F. Immunomodulatory effects of RXR rexinoids: modulation of high-affinity IL-2R expression enhances susceptibility to denileukin diftitox. Blood. 2002;100(4):1399–403.

    Article  PubMed  CAS  Google Scholar 

  54. Foss F, Demierre MF, DiVenuti G. A phase-1 trial of bexarotene and denileukin diftitox in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood. 2005;106(2):454–7.

    Article  PubMed  CAS  Google Scholar 

  55. Nakase K, Kita K, Nasu K, et al. Differential expression of interleukin-2 receptors (alpha and beta chain) in mature lymphoid neoplasms. Am J Hematol. 1994;46:179–83.

    Article  PubMed  CAS  Google Scholar 

  56. Nichols J, Foss F, Kuzel TM, et al. Interleukin-2 fusion protein: An investigational therapy for interleukin-2 receptor expressing malignancies. Eur J Cancer. 1997;33 suppl 1:S34–6.

    Article  PubMed  CAS  Google Scholar 

  57. Prince HM, Duvic M, Martin A et al. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-celllymphoma. J Clin Oncol. 2010;28(11):1870–7. Epub 2010 Mar 8.

    Google Scholar 

  58. Foss F, Duvic M, Olsen EA. Predictors of complete responses with denileukin diftitox in cutaneous T-cell lymphoma. Am J Hematol. 2011;86(7):627–30. doi:10.1002/ajh.22039.

    Article  PubMed  Google Scholar 

  59. Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19:376–88.

    PubMed  CAS  Google Scholar 

  60. Zic JA. The treatment of cutaneous T-cell lymphoma with photopheresis. Dermatol Ther. 2003;16:337–46.

    Article  PubMed  Google Scholar 

  61. Duvic M, Chiao N, Talpur R. Extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma. J Cutan Med Surg. 2003;7:3–7.

    Article  PubMed  Google Scholar 

  62. Knobler R, Jantschitsch C. Extracorporeal photochemoimmunotherapy in cutaneous T-cell lymphoma. Transfus Apher Sci. 2003;28:81–9.

    Article  PubMed  CAS  Google Scholar 

  63. Olsen EA, Rook AH, Zic J, et al. Sézary syndrome: Immunopathogenesis, literature review of therapeutic options, and recommendations for therapy by the United States Cutaneous Lymphoma Consortium (USCLC). J Am Acad Dermatol. 2011;64(2):352–404.

    Article  PubMed  Google Scholar 

  64. Bisaccia E, Vonderheid EC, Geskin L. Safety of a new, single, integrated, closed photopheresis system in patients with cutaneous T-cell lymphoma. Br J Dermatol. 2009;161(1):167–9.

    Article  PubMed  CAS  Google Scholar 

  65. Wilson LD, Jones GW, Kim D, et al. Experience with total skin electron beam therapy in combination with extracorporeal photophoresis in the management of patients with erythrodermic (T4) mycosis fungoides. J Am Acad Dermatol. 2000;43:54–60.

    Article  PubMed  CAS  Google Scholar 

  66. Suchin KR, Cucchiara AJ, Gottleib SL, et al. Treatment of cutaneous T-cell lymphoma with combined immunotherapy: a 14-year experience at a single institution. Arch Dermatol. 2002;138:1054–60.

    Article  PubMed  Google Scholar 

  67. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.

    Article  PubMed  CAS  Google Scholar 

  68. Peart MJ, Smyth GK, Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005;102:3697–702. doi:10.1073/pnas.0500369102.

    Article  PubMed  CAS  Google Scholar 

  69. Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001;98(9):2865–8.

    Article  PubMed  CAS  Google Scholar 

  70. Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485.

    Article  PubMed  CAS  Google Scholar 

  71. Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–7.

    Article  PubMed  CAS  Google Scholar 

  72. Piekarz RL, Sackett DL, Bates SE. Histone deacetylase inhibitors and demethylating agents: Clinical development of histone deacetylase inhibitors for cancer therapy. Cancer J. 2007;13:30–9.

    Article  PubMed  CAS  Google Scholar 

  73. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang C, Richon V, Ni X, et al. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol. 2005;125:1045–52.

    Article  PubMed  CAS  Google Scholar 

  75. Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat for refractory cutaneous T cell lymphoma. Blood. 2007;109:31–9.

    Article  PubMed  CAS  Google Scholar 

  76. Wozniak MB, Villuendas R, Bischoff JR, et al. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica. 2010;95(4):613–21.

    Article  PubMed  CAS  Google Scholar 

  77. Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.

    Article  PubMed  CAS  Google Scholar 

  78. Avilés A, Nambo MJ, Neri N, et al. Interferon and low dose methotrexate improve outcome in refractory mycosis fungoides/Sézary syndrome. Cancer Biother Radiopharm. 2007;22(6):836–40.

    Article  PubMed  CAS  Google Scholar 

  79. Chiarion-Sileni V, Bononi A, Fornasa CV, et al. Phase II trial of interferon-alpha-2a plus psolaren with ultraviolet light A in patients with cutaneous T-cell lymphoma. Cancer. 2002;95:569–75.

    Article  PubMed  CAS  Google Scholar 

  80. Rupoli S, Goteri G, Pulini S, et al. Long-term experience with low-dose interferon-alpha and PUVA in the management of early mycosis fungoides. Eur J Haematol. 2005;75:136–45.

    Article  PubMed  CAS  Google Scholar 

  81. Stadler RKA, Luger T, Sterry W. Prospective, randomized, multicentre clinical trial on the use of interferon a-2a plus PUVA versus PUVA monotherapy in patients with cutaneous T-cell lymphoma, stages I and II. J Clin Oncology, ASCO Annual Meeting Proceedings Part I 2006;24 (Suppl.):18s. (abstr 7541).

  82. Olsen EA, Rosen ST, Vollmer RT, et al. Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol. 1989;20(3):395–407.

    Article  PubMed  CAS  Google Scholar 

  83. Querfeld C, Mehta N, Rosen ST, Guitart J, Rademaker A, Gerami P, et al. Alemtuzumab for relapsed and refractory erythrodermic cutaneous T-cell lymphoma: a single institution experience from the Robert H. Lurie Comprehensive Cancer Center. Leuk Lymphoma. 2009;50:1969–76.

    Article  PubMed  CAS  Google Scholar 

  84. Dyer MJ, Hale G, Hayhoe FG, Waldmann H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73:1431–9.

    PubMed  CAS  Google Scholar 

  85. Salisbury JR, Rapson NT, Codd JD, et al. Immunohistochemical analysis of CDw52 antigen expression in non-Hodgkin’s lymphomas. J Clin Pathol. 1994;47:313–7.

    Article  PubMed  CAS  Google Scholar 

  86. Riechmann L, Clark M, Waldmann H, et al. Reshaping human antibodies for therapy. Nature. 1998;332:323–7.

    Article  Google Scholar 

  87. Piccaluga PP, Agostinelli C, Righi S, et al. Expression of CD52 in peripheral T-cell Lymphoma. Haematologica. 2007;92:566–7.

    Article  PubMed  Google Scholar 

  88. Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy. 2001;3:137–43.

    Article  PubMed  CAS  Google Scholar 

  89. Dyer MJ, Hale G, Hayhoe FG, et al. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73:1431–9.

    PubMed  CAS  Google Scholar 

  90. Dearden CE, Matutes E, Cazin B, et al. High remission rate in prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98:1721–6.

    Article  PubMed  CAS  Google Scholar 

  91. Gallamini A, Zaja F, Patti C, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell Lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood. 2007;110:2316–23.

    Article  PubMed  CAS  Google Scholar 

  92. Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20:205–13.

    Article  PubMed  CAS  Google Scholar 

  93. Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell Lymphoma. Blood. 2004;103:2920–4.

    Article  PubMed  CAS  Google Scholar 

  94. Mijovic A, Abdallah A, Pearce L, et al. Effects on erythropoiesis of alemtuzumab-containing reduced intensity and standard conditioning regimens. Br J Haematol. 2008;142:444–52.

    Article  PubMed  CAS  Google Scholar 

  95. Bernengo MG, Quaglino P, Comessatti A, et al. Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92:784–94.

    Article  PubMed  CAS  Google Scholar 

  96. Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fugoides/Sezary syndrome. Blood. 2003;101:4267–72.

    Article  PubMed  CAS  Google Scholar 

  97. Weder P, Anliker M, Itin P, Bargetzi M. Familial cutaneous mycosis fungoides: successful treatment with a combination of gemcitabine and alemtuzumab. Dermatology. 2004;208:281–3.

    Article  PubMed  CAS  Google Scholar 

  98. Porcu P, Baiocchi RA, Lee J, Lin TS, Blum K, Grady T, et al. Phase I trial of subcutaneous (SQ) alemtuzumab (A) and CHOP in T-cell lymphoma: preliminary results [abstract]. J Clin Oncol. 2006;24((suppl 18S)):7594.

    Google Scholar 

  99. Querfeld C, Kuzel TM, Guitart J, et al. Preliminary results of a phase II study of CC-5013 (Lenalidomide, Revlimid™) in patients with cutaneous T-cell lymphoma. Blood. 2005;106:936a–7a.

    Google Scholar 

  100. Querfeld C, Kuzel T, Guitart J, et al. Lenalidomide (Revlimid®) in patients with cutaneous T-cell lymphoma. Hematology Meeting Reports. 2009;3(1):103–5.

    Google Scholar 

  101. Kaye FJ, Bunn Jr PA, Steinberg SM, et al. A randomized trial comparing combination electron-beam radiation and chemotherapy with topical therapy in the initial treatment of mycosis fungoides. N Engl J Med. 1989;321:1784–90.

    Article  PubMed  CAS  Google Scholar 

  102. Krug LM, Ng KK, Kris MG, et al. Phase I and pharmacokinetic study of 10-propargyl- 10-deazaaminopterin, a new antifolate. Clin Cancer Res. 2000;6(9):3493–8.

    PubMed  CAS  Google Scholar 

  103. O’Connor OA. Pralatrexate: an emerging new agent with activity in T-cell lymphomas. Curr Opin Oncol. 2006;18(6):591–7.

    Article  PubMed  CAS  Google Scholar 

  104. O’Connor OA, Horwitz S, Hamlin P, et al. Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol. 2009;27(26):4357–64.

    Article  PubMed  CAS  Google Scholar 

  105. Zinzani PL, Musuraca G, Tani M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(27):4293–7.

    Article  PubMed  CAS  Google Scholar 

  106. Nabhan C, Krett N, Gandhi V, Rosen S. Gemcitabine in hematologic malignancies. Curr Opin Oncol. 2001;13:514–21.

    Article  PubMed  CAS  Google Scholar 

  107. Duvic M, Talpur R, Wen S, Kurzrock R, David CL, Apisarnthanarax N. Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2006;7:51–8.

    Article  PubMed  CAS  Google Scholar 

  108. Zinzani PL, Baliva G, Magagnoli M, Bendandi M, Modugno G, Gherlinzoni F, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol. 2000;18:2603–6.

    PubMed  CAS  Google Scholar 

  109. Marchi E, Alinari L, Tani M, Stefoni V, Pimpinelli N, Berti E, et al. Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer. 2005;104:2437–41.

    Article  PubMed  CAS  Google Scholar 

  110. Von Hoff DD, Dahlberg S, Hartstock RJ, et al. Activity of fludarabine monophosphate in patients with advanced mycosis fungoides: a Southwest Oncology Group study. J Natl Cancer Inst. 1990;82(16):1353–5.

    Article  Google Scholar 

  111. Foss FM, Ihde DC, Breneman DL, et al. Phase II study of pentostatin and intermittent high-dose recombinant interferon alfa-2a in advanced mycosis fungoides/Sezary syndrome. J Clin Oncol. 1992;10(12):1907–13.

    PubMed  CAS  Google Scholar 

  112. Wollina U, Dummer R, Brockmeyer NH, et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer. 2003;98(5):993–1001.

    Article  PubMed  CAS  Google Scholar 

  113. Querfeld C, Rosen ST, Guitart J, et al. Multicenter Phase II Trial of Temozolomide in Mycosis Fungoides/SezarySyndrome: Correlation with O6-Methylguanine-DNA Methyltransferase andMismatch Repair Proteins. Clin Cancer Res. 2011;17(17):5748–54.

    Article  PubMed  CAS  Google Scholar 

  114. Liu L, Markowitz S, Gerson SL. Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res. 1996;56:5375–9.

    PubMed  CAS  Google Scholar 

  115. Reni M, Mason W, Zaja F, et al. Salvage chemotherapy with temozolomide in primary CNS lymphomas: preliminary results of a phase II trial. Eur J Cancer. 2004;40:1682–8.

    Article  PubMed  CAS  Google Scholar 

  116. Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18:158–66.

    PubMed  CAS  Google Scholar 

  117. Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res. 2004;10:1871–4.

    Article  PubMed  CAS  Google Scholar 

  118. Akpek G, Koh HK, Bogen S, et al. Chemotherapy with etoposide, vincristine, doxorubicin, bolus cyclophosphamide, and oral prednisone in patients with refractory cutaneous T cell lymphoma. Cancer. 1999;86:1368–76.

    Article  PubMed  CAS  Google Scholar 

  119. Fierro MT, Quaglino P, Savoia P, Verrone A, Bernengo MG. Systemic polychemotherapy in the treatment of primary cutaneous lymphomas: a clinical follow-up study of 81 patients treated with COP or CHOP. Leuk Lymphoma. 1998;31(5–6):583–8.

    PubMed  CAS  Google Scholar 

  120. Mebazaa A, Dupuy A, Rybojad M, Mouly F, Moulonguet I, Vignon-Pennamen MD, Rivet J, Janin A, Lebbé C, Dubertret L, Morel P, Bachelez H, Brice P. ESHAP for primary cutaneous T-cell lymphomas: efficacy and tolerance in 11 patients. Hematol J. 2005;5(7):553–8.

    Article  PubMed  Google Scholar 

  121. Duarte RF, Schmitz N, Servitje O, et al. Haematopoietic stem cell transplantation for patients with primary cutaneous T-cell lymphoma. Bone Marrow Transplant. 2008;41:597–604.

    Article  PubMed  CAS  Google Scholar 

  122. Wu PA, Kim YH, Lavori PW, et al. A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sezary syndrome. Biol Blood Marrow Transplant. 2009;15:982–90.

    Article  PubMed  Google Scholar 

  123. Duarte RF, Canals C, Onida F, et al. Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sézary syndrome: a retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28(29):4492–9.

    Article  PubMed  Google Scholar 

  124. Carrié E, Buzyn A, Fraitag S, et al. Transformed juvenile-onset mycosis fungoides: Treatment by bone marrow transplantation with graft-versus-lymphoma effect. Ann Dermatol Venereol. 2007;134:471–6.

    Article  PubMed  Google Scholar 

  125. Gabriel IH, Olavarria E, Jones RR, et al. Graft versus lymphoma effect after early relapse following reduced intensity sibling allogeneic stem cell transplantation for relapsed cytotoxic variant of mycosis fungoides. Bone Marrow Transplant. 2007;40:401–3.

    Article  PubMed  CAS  Google Scholar 

  126. Soligo D, Ibatici A, Berti E, et al. Treatment of advanced mycosis fungoides by allogeneic stem-cell transplantation with a nonmyeloablative regimen. Bone Marrow Transplant. 2003;31:663–6.

    Article  PubMed  CAS  Google Scholar 

  127. Burt RK, Guitart J, Traynor A, et al. Allogeneic hematopoietic stem cell transplantation for advanced mycosis fungoides: Evidence of a graft-versus-tumor effect. Bone Marrow Transplant. 2000;25:111–3.

    Article  PubMed  CAS  Google Scholar 

  128. Molina A, Zain J, Arber DA, et al. Durable clinical, cytogenetic, and molecular remissions after allogeneic hematopoietic cell transplantation for refractory Sézary syndrome and mycosis fungoides. J Clin Oncol. 2005;23:6163–71.

    Article  PubMed  Google Scholar 

  129. Duarte RF, Schmitz N, Servitje O, et al. Haematopoietic stem cell transplantation for patients with primary cutaneous T-cell lymphoma. Bone Marrow Transplant. 2008;41:597–604.

    Article  PubMed  CAS  Google Scholar 

  130. Duvic M, Donato M, Dabaja B, et al. Total skin electron beam and non-myeloablative allogeneic hematopoietic stem-cell transplantation in advanced mycosis fungoides and Sezary syndrome. J Clin Oncol. 2010;28(14):2365–72.

    Article  PubMed  Google Scholar 

  131. BioCryst Pharmaceuticals. Forodesine in the treatment of cutaneous T-cell lymphoma [ClinicalTrials.gov identifier NCT00501735]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov

  132. Rider DA, Havenith CEG, de Ridder R, Schuurman J, Favre C, Cooper JC, et al. A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Res. 2007;67:9945–53.

    Article  PubMed  CAS  Google Scholar 

  133. Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs. 2011;3:76–99.

    Article  PubMed  Google Scholar 

Download references

Disclosure

T. Bloom: none; T. Kuzel: has grants pending from Eli Lilly and received honoraria from Celgene; C. Querfeld: none; J. Guitart: none; S. Rosen: External advisory board member for Abbott Laboratories, Celgene and Merck US Cutaneous T-Cell Lymphoma, has consulted for Allos, CTI, and Genentech, has grants pending for Celgene, has received payment for development of educational presentations and received honoraria from Allos Therapeutics, Genzyme, Genentech, Seattle Genetics, and Therakos, and has received royalties from Human Myeloma Cell Line MM-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Rosen MD, FACP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, T., Kuzel, T.M., Querfeld, C. et al. Cutaneous T-Cell Lymphomas: A Review of New Discoveries and Treatments. Curr. Treat. Options in Oncol. 13, 102–121 (2012). https://doi.org/10.1007/s11864-011-0179-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-011-0179-8

Keywords

Navigation