Skip to main content

Advertisement

Log in

Immunotherapeutic Treatment Strategies for Primary Brain Tumors

  • Central Nervous System Malignancies
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Primary brain tumors account for a minor fraction of cancer diagnoses made worldwide and remain one of the most difficult to treat. Despite ongoing efforts to improve the quality of life and overall survival of these patients, current multimodality therapy has achieved only modest gains; the median survival is approximately 14 months among patients with the deadliest form of primary brain tumor, glioblastoma multiforme. Although the brain has been long considered an immunologically privileged organ, there is increased awareness of and appreciation for the complex interplay between the nervous system and the immune system in the setting of many disease states, including neoplastic. Although the concept of harnessing the specificity, activity, and memory of the immune system toward the treatment of brain tumors has been in existence for several decades and the neuro-oncology literature holds many publications that once promised of a breakthrough, only recently has a strategy emerged that addresses many of the limitations identified through past failures. It is with cautious optimism that the authors review the past and discuss the present status of immunotherapy and its role in the management of patients with primary brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Kleihues P, Louis DN, Scheithauer BW, et al.: The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 2002, 61:215–225

    PubMed  Google Scholar 

  2. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL: Epidemiology of brain tumors. Neurol Clin 2007, 25:867–890

    Article  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352:1036–1038

    Article  Google Scholar 

  4. Singh SK, Clarke ID, Teraski M, et al.: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63:5821–5828

    PubMed  CAS  Google Scholar 

  5. Galli R, Binda E, Orfanelli U, et al.: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004, 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  6. Bao S, Wu Q, McLendon RE, et al.: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444:756–760

    Article  PubMed  CAS  Google Scholar 

  7. Eramo A, Ricci-Vitiani L, Zeuner A, et al.: Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 2006, 13:1238–1241

    Article  PubMed  CAS  Google Scholar 

  8. Dirks PB: Cancer: stem cells and brain tumors. Nature 2006, 444:687–688

    Article  PubMed  CAS  Google Scholar 

  9. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57–70

    Article  PubMed  CAS  Google Scholar 

  10. Janeway CL: Immunobiology, 6th ed. New York: Garland Science; 2004

  11. Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD: Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 2006, 26:149–188

    PubMed  CAS  Google Scholar 

  12. Hattiangady B, Shuai B, Cai J, et al.: Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cell in the aging hippocampus. Stem Cells 2007, 25:2104–2117

    Article  PubMed  Google Scholar 

  13. Mueller D, Shamblott MJ, Fox HE, Gearhart JD, Martin LJ: Transplanted human embryonic-derived neural stem cells replace neurons and oligodendrocytes in the forebrain of neonatal mice with excitotoxic brain injury. J Neurosci Res 2005, 82:592–608

    Article  PubMed  CAS  Google Scholar 

  14. Zhao G, McCarthy NF, Sheehy PA, Taylor RM: Comparison of the behavior of neural stem cells in the brain of normal and twitcher mice after neonatal transplantation. Stem Cells Dev 2007, 16:429–438

    Article  PubMed  Google Scholar 

  15. Griffin DE: Immune responses to RNA-virus infection of the CNS. Nat Rev Immunol 2003, 3:493–502

    Article  PubMed  CAS  Google Scholar 

  16. Dunn GP, Dunn IF, Curry WT: Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 2007, 7:12–29

    PubMed  Google Scholar 

  17. Sawamura Y, Hosokawa M, Kuppner MC, et al.: Antitumor activity and surface phenotypes of human glioma-infiltrating lymphocytes after in vitro expansion in the presence of interleukin 2. Cancer Res 1989, 49:1843–1849

    PubMed  CAS  Google Scholar 

  18. Jereb B, Petric J, Lamovec J, Skrbec M, Soss E: Intratumor application of human leukocyte interferon-alpha in patients with malignant brain tumors. Am J Clin Oncol 1989, 12:1–7

    PubMed  CAS  Google Scholar 

  19. Farkkila M, Jaaskelainen J, Kallio M, et al.: Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma. Br J Cancer 1994, 70:138–141

    PubMed  CAS  Google Scholar 

  20. Wersall P, Ohlsson I, Biberfeld P, et al.: Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother 1997, 44:157–164

    Article  PubMed  CAS  Google Scholar 

  21. Riva P, Franceschi G, Arista A, et al.: Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas: a six-year clinical experience. Cancer 1997, 80:2733–2742

    Article  PubMed  CAS  Google Scholar 

  22. Hopkins K, Papanastassiou V, Kemshead JT: The treatment of patients with recurrent malignant gliomas with intratumoral radioimmunoconjugates. Recent Results Cancer Res 1996, 141:159–175

    PubMed  CAS  Google Scholar 

  23. Merchant RE, Grant AJ, Merchant LH, Young HF: Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 1988, 62:665–671

    Article  PubMed  CAS  Google Scholar 

  24. Dillman RO, Duma CM, Schiltz PM, et al.: Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother 2004, 27:398–404

    Article  PubMed  Google Scholar 

  25. Kruse CA, Cepeda L, Owens B, et al.: Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol Immunother 1997, 45:77–87

    Article  PubMed  CAS  Google Scholar 

  26. Plautz GE, Bernett GH, Miller DW, et al.: Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 1998, 89:42–51

    Article  PubMed  CAS  Google Scholar 

This report employed a novel technique whereby irradiated tumors were injected intradermally and the lymph nodes draining the injection site were later harvested so that the activated lymphocytes may be re-introduced into the patient.

  1. Thurner B, Roder C, Dieckmann D, et al.: Generation of large numbers of fully mature and stable dendritic cells from leukopheresis products for clinical application. J Immunol Methods 1999, 223:1–15

    Article  PubMed  CAS  Google Scholar 

  2. Yu JS, Wheeler CJ, Zeltzer PM, et al.: Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001, 61:842–847

    PubMed  CAS  Google Scholar 

This report validates the concept of using dendritic cells as mediators of immunotherapy, with demonstration of both systemic and local evidence of immune response.

  1. Wheeler CJ, Das A, Liu G, Yu JS, Black KL: Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 2004, 10:5316–5326

    Article  PubMed  CAS  Google Scholar 

  2. Yamanaka R, Abe T, Yajima N, et al.: Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 2003, 89:1172–1179

    Article  PubMed  CAS  Google Scholar 

  3. Rutkowski S, De Vleeschouwer S, Kaempgen E, et al.: Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 2004, 91:1656–1662

    PubMed  CAS  Google Scholar 

  4. Yamanaka R, Homma J, Yajima N, et al.: Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 2005, 11:4160–4167

    Article  PubMed  CAS  Google Scholar 

  5. Kikuchi T, Akasaki Y, Irie M, et al.: Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 2001, 50:337–344

    Article  PubMed  CAS  Google Scholar 

  6. Kikuchi T, Akasaki Y, Abe T, et al.: Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004, 27:452–459

    Article  PubMed  CAS  Google Scholar 

  7. Liau LM, Prins RM, Kiertscher SM, et al.: Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005, 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  8. Frederick L, Wang XY, Eley G, James CD: Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000, 60:1383–1387

    PubMed  CAS  Google Scholar 

  9. Heimberger AB, Crotty LE, Archer GE, et al.: Epidermal growth factor receptor vIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 2003, 9:4247–4254

    PubMed  CAS  Google Scholar 

  10. Heimberger AB, Hussain SF, Aldape K, et al.: Tumor-specific peptide vaccination in newly-diagnosed patients with GBM. J Clin Oncol 2006, 24:1072 abstract 2529

    Article  Google Scholar 

This report demonstrates the early promising results of a phase I study utilizing a peptide-based vaccine designed to target EGFRvIII

  1. Parsa AT, Crane C, Wilson S, et al.: Autologous tumor derived gp96 evokes a tumor specific immune response in recurrent glioma patients that correlates with clinical response to therapy. AACR-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics 2007, abstract C274; 2007

  2. Salazar AM, Levy HB, Ondra S, et al.: Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996, 38:1096–1110

    Article  PubMed  CAS  Google Scholar 

  3. Zhu X, Nishimura F, Sasaki K, et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 2007, 5:10–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors have no financial disclosures to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Muro MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Raizer, J.J. & Muro, K. Immunotherapeutic Treatment Strategies for Primary Brain Tumors. Curr. Treat. Options in Oncol. 9, 32–40 (2008). https://doi.org/10.1007/s11864-008-0055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-008-0055-3

Keywords

Navigation