Skip to main content

Advertisement

Log in

Predictive and prognostic markers in human glioblastomas

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Glioblastomas (GBMs) are among the most aggressive of all known human tumors. The median survival times remain in the 12- to 15-month range despite aggressive surgery, radiation, and chemotherapy. Through molecular and genetic profiling efforts, underlying mechanisms of resistance to these therapies are becoming better understood. The present standard of care has been shaped by the recently reported phase III study by the European Organisation for Research and Treatment of Cancer and the National Cancer Institute of Canada, which found that the addition of temozolomide (TMZ) to radiation therapy significantly improved outcome compared with radiation alone. However, careful examination of these data reveals that not all GBM patients benefited from the addition of TMZ to radiation therapy. A companion correlative study found that GBM patients with tumors with MGMT promoter methylation appeared to derive the greatest benefit from the addition of TMZ to radiation therapy. Although this finding is provocative, it should be kept in mind that this study was performed retrospectively and that prospective validation is required before MGMT methylation can be used for clinical stratification purposes. However, this study does show promise for the tailoring of future treatments according to the molecular and genetic profiles of an individual's tumor rather than using the “one-glove-fits-all≓ approach that is currently being followed. As more effective “smart drugs≓ are developed, molecular and genetic profiling will assume even greater importance in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Maher EA, Furnari FB, Bachoo RM, et al.:Malignant glioma:genetics and biology of a grave matter. Genes Dev 2001, 15:1311–1333.

    Article  PubMed  CAS  Google Scholar 

  2. Geng L, Shinohara ET, Kim D, et al.:STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int J Radiat Oncol Biol Phys 2006, 64:263–271.

    Article  PubMed  Google Scholar 

  3. Hagerstrand D, Hesselager G, Achterberg S, et al.:Characterization of an imatinib-sensitive subset of high-grade human glioma cultures. Oncogene 2006, In press.

  4. Reardon DA, Egorin MJ, Quinn JA, et al.:Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005, 23:9359–9368.

    Article  PubMed  CAS  Google Scholar 

  5. Frederick L, Wang XY, Eley G, James CD:Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000, 60:1383–1387.

    PubMed  CAS  Google Scholar 

  6. Chakravarti A, Seiferheld W, Tu X, et al.:Immunohistochemically determined total epidermal growth factor receptor levels not of prognostic value in newly diagnosed glioblastoma multiforme:report from the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 2005, 62:318–327.

    Article  PubMed  CAS  Google Scholar 

  7. Miettinen PJ, Berger JE, Meneses J, et al.:Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 1995, 376:337–341.

    Article  PubMed  CAS  Google Scholar 

  8. Threadgill DW, Dlugosz AA, Hansen LA et al.:Targeted disruption of mouse EGF receptor:effect of genetic background on mutant phenotype. Science 1995, 269:230–234.

    Article  PubMed  CAS  Google Scholar 

  9. Burrows RC, Wancio D, Levitt P, Lillien L:Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 1997, 19:251–267.

    Article  PubMed  CAS  Google Scholar 

  10. Fricker-Gates RA, Winkler C, Kirik D, et al.:EGF infusion stimulates the proliferation and migration of embryonic progenitor cells transplanted in the adult rat striatum. Exp Neurol 2000, 165:237–247.

    Article  PubMed  CAS  Google Scholar 

  11. Barker FG 2nd, Simmons ML, Chang SM, et al.:EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2001, 51:410–418.

    Article  PubMed  CAS  Google Scholar 

  12. Chakravarti A, Delaney MA, Noll E, et al.:Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res 2001, 7:2387–2395.

    PubMed  CAS  Google Scholar 

  13. Etienne MC, Formento JL, Lebrun-Frenay C, et al.:Epidermal growth factor receptor and labeling index are independent prognostic factors in glial tumor outcome. Clin Cancer Res 1998, 4:2383–2390.

    PubMed  CAS  Google Scholar 

  14. Feldkamp MM, Lala P, Lau N, et al.:Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 1999, 45:1442–1453.

    Article  PubMed  CAS  Google Scholar 

  15. Shinojima N, Tada K, Shiraishi S, et al.:Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003, 63:6962–6970.

    PubMed  CAS  Google Scholar 

  16. Smith JS, Tachibana I, Passe SM, et al.:PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 2001, 93:1246–1256.

    Article  PubMed  CAS  Google Scholar 

  17. Rainov NG, Dobberstein KU, Bahn H, et al.:Prognostic factors in malignant glioma:influence of the overexpression of oncogene and tumor-suppressor gene products on survival. J Neurooncol 1997, 35:13–28.

    Article  PubMed  CAS  Google Scholar 

  18. Chakravarti A, Seiferheld W, Tu X, et al.:Immunohistochemically determined total EGFR levels not of prognostic value in newly diagnosed GBM:a report from the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 2005, 62:318–327.

    Article  PubMed  CAS  Google Scholar 

  19. Buckner JC, Aldape KD, Ballman K, et al.:Immunohistochemical detection of EGFRvIII and prognostic significance in patients with malignant glioma enrolled in NCCTG clinical trials. J Clin Oncol 2004, 22(Suppl 14):1508.

    Google Scholar 

  20. Prados M, Yung W, Wen P, et al.:Phase I study of ZD1839 plus temozolomide in patients with malignant glioma. J Clin Oncol 2004, 22(Suppl 14):1504.

    Google Scholar 

  21. Rich JN, Reardon DA, Peery T, et al.:Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004, 22:133–142.

    Article  PubMed  CAS  Google Scholar 

  22. Prados M, Chang S, Burton E, et al.:Phase I study of OSI-774 alone or with temozolomide in patients with malignant glioma. Proc Am Soc Clin Oncol 2003, 22:99.

    Google Scholar 

  23. Chakravarti A, Zhai G, Suzuki Y, et al.:The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 2004, 22:1926–1933. This paper shows a strong correlation of PI3K pathway activation with adverse outcome in human gliomas.

    Article  PubMed  CAS  Google Scholar 

  24. Chakravarti A, Loeffler JS, Dyson NJ:Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 2002, 62:200–207.

    PubMed  CAS  Google Scholar 

  25. Chakravarti A, Seiferheld W, Robins HI, et al.:An update of phase I data from RTOG 0211:a phase I/II clinical study of gefitinib+radiation for newly-diagnosed GBM patients. J Clin Oncol 2004, 22(Suppl 14):1571.

    Google Scholar 

  26. Yu H, Rohan T:Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000, 92:1472–1489.

    Article  PubMed  CAS  Google Scholar 

  27. Chakravarti A, Chakladar A, Delaney MA, et al.:The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 2002, 62:4307–4315.

    PubMed  CAS  Google Scholar 

  28. Andrews DW, Resnicoff M, Flanders AE, et al.:Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 2001, 19:2189–2200.

    PubMed  CAS  Google Scholar 

  29. Chakravarti A, Loeffler JS, Dyson NJ:Insulin-like growth factor receptor I mediates resistance to antiepidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 2002, 62:200–207.

    PubMed  CAS  Google Scholar 

  30. Guha A:Ras activation in astrocytomas and neurofibromas. Can J Neurol Sci 1998, 25:267–281.

    PubMed  CAS  Google Scholar 

  31. Feldkamp MM, Lau N, Roncari L, Guha A:Isotype-specific Ras. GTP-levels predict the efficacy of farnesyl transferase inhibitors against human astrocytomas regardless of Ras mutational status. Cancer Res 2001, 61:4425–4431.

    PubMed  CAS  Google Scholar 

  32. Ding H, Roncari L, Shannon P, et al.:Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001, 61:3826–3836.

    PubMed  CAS  Google Scholar 

  33. Zagzag D, Amirnovin R, Greco MA, et al.:Vascular apoptosis and involution in gliomas precede neovascularization:a novel concept for glioma growth and angiogenesis. Lab Invest 2000, 80:837–849.

    PubMed  CAS  Google Scholar 

  34. Zagzag D, Salnikow K, Chiriboga L, et al.:Downregulation of major histocompatibility complex antigens in invading glioma cells:stealth invasion of the brain. Lab Invest 2005, 85:328–341.

    Article  PubMed  CAS  Google Scholar 

  35. Brat DJ, Van Meir EG:Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 2004, 84:397–405.

    Article  PubMed  CAS  Google Scholar 

  36. Rong Y, Post DE, Pieper RO, et al.:PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005, 65:1406–1413.

    Article  PubMed  CAS  Google Scholar 

  37. Pope WB, Lai A, Nghiemphu P, et al.:MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006, 66:1258–1260.

    Article  PubMed  CAS  Google Scholar 

  38. Hegi ME, Diserens AC, Gorlia T, et al.:MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005, 352:997–1003. This paper shows a strong correlation of MGMT methylation with outcome in TMZ-treated glioblastoma patients.

    Article  Google Scholar 

  39. Zhang M, Chakravarti A:Novel radiation-enhancing agents in malignant gliomas. Semin Radiat Oncol 2006, 16:29–37.

    Article  PubMed  CAS  Google Scholar 

  40. Chakravarti A, Erkkinen MG, Nestler U, et al.:Temozolomide-mediated radiation enhancement in glioblastoma:a report on underlying mechanisms. Clin Cancer Res 2006, 12:4738–4746.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palanichamy, K., Erkkinen, M. & Chakravarti, A. Predictive and prognostic markers in human glioblastomas. Curr. Treat. Options in Oncol. 7, 490–504 (2006). https://doi.org/10.1007/s11864-006-0024-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-006-0024-7

Keywords

Navigation