Skip to main content

Advertisement

Log in

Meningioma: Current treatment options and future directions

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Benign meningiomas can be observed if not symptomatic or growing. When treatment is indicated, the options are surgery, radiosurgery, fractionated radiation therapy, or a combination of these modalities. Except in certain cases, such as large tumors that require debulking for relief of symptoms, we do not recommend the routine use of combination therapy. Intracranial meningiomas have usually been treated with surgical resection with an expected durable local control of 80% to 90% when a gross total resection (GTR) is obtained. Patients who have inoperable disease, refuse surgery, undergo less than a GTR, or who have aggressive histology should instead be considered candidates for radiation therapy or radiosurgery. While benign meningiomas can be successfully treated definitively or postoperatively with either fractionated radiation therapy or single fraction radiosurgery, atypical or malignant lesions are best treated with fractionated radiation therapy with conventional dosimetric margins. The role of systemic therapy is not yet defined, but multiple agents are being investigated in early phase trials for patients with recurrent or progressive disease after standard therapy has failed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Goldsmith BJ: Meningioma. In Textbook of Radiation Oncology: Principles, edn 1. Edited by Leibel SJ, Phillips TI. New York: Elsevier; 1998: 324–340.

    Google Scholar 

  2. Al Mefty O, Topsakal C, Pravdenkova S, et al.: Radiationinduced meningiomas: clinical, pathological, cytokinetic, and cytogenetic characteristics. J Neurosurg 2004, 100:1002–1013.

    Google Scholar 

  3. Asgharian B, Chen YJ, Patronas NJ, et al.: Meningiomas may be a component tumor of multiple endocrine neoplasia type 1. Clin Cancer Res 2004, 10:869–880.

    Article  PubMed  CAS  Google Scholar 

  4. Kimmelman A, Liang BC: Familial neurogenic tumor syndromes. Hematol Oncol Clin North Am 2001, 15:1073–1084.

    Article  PubMed  CAS  Google Scholar 

  5. Eljamel MS, Foy PM: Multiple meningiomas and their relation to neurofibromatosis review of the literature and report of seven cases. Surg Neurol 1989, 32:131–136.

    Article  PubMed  CAS  Google Scholar 

  6. Perry A, Stafford SL, Scheithauer BW, et al.: Meningioma grading: an analysis of histologic parameters: seminal paper on the histopathology of meningioma. Am J Surg Pathol 1997, 21:1455–1465. Seminal paper on the histopathology of meningioma.

    Article  PubMed  CAS  Google Scholar 

  7. International Agency for Research on Cancer: World Health Organization Classification of Tumours: Pathology and Genetics: Tumours of the Nervous System, edn 2. United Kingdom; Oxford Univ Press: 2000. Standard reference work on the histopathology of central nervous system malignancies.

  8. Perry A, Scheithauer BW, Stafford SL, et al.: Malignancy in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 1999, 85:2046–2056. Seminal paper on the grading of malignant meningiomas.

    PubMed  CAS  Google Scholar 

  9. Laidlaw JD, Kumar A, Chan A: Dural metastases mimicking meningioma [case review]. J Clin Neurosci 2004, 11:780–783.

    Article  PubMed  Google Scholar 

  10. Kremer S, Grand S, Remy C, et al.: Contribution of dynamic contrast magnetic resonance imaging to the differentiation between dural metastasis and meningioma. Neuroradiology 2004, 46:642–648.

    Article  PubMed  CAS  Google Scholar 

  11. Verheijen FM, Donker GH, Viera CS, et al.: Progesterone receptor, bc1-2, and bax expression in meningiomas. J Neurooncol 2002, 56:35–41.

    Article  PubMed  CAS  Google Scholar 

  12. Wahab M, Al Azzawi F: Meningioma and hormonal influences. Climacteric 2003, 6:285–292.

    Article  PubMed  CAS  Google Scholar 

  13. Gruber CJ, Huber JC: Differential effects of progestins on the brain. Maturitas 2003, 46(Suppl 1):S71-S75.

    Article  PubMed  CAS  Google Scholar 

  14. Chamberlain MC, Tsao-Wei DD, Groshen S: Temozolomide for treatment-resistant recurrent meningioma. Neurology 2004, 62:1210–1212.

    PubMed  CAS  Google Scholar 

  15. Newton HB, Slivka MA, Stevens C: Hydroxyurea chemotherapy for unresectable or residual meningioma. J Neurooncol 2000, 49:165–170.

    Article  PubMed  CAS  Google Scholar 

  16. Loven D, Hardoff R, Sever ZB, et al.: Nonresectable slowgrowing meningiomas treated by hydroxyurea. J Neurooncol 2004, 67:221–226.

    Article  PubMed  Google Scholar 

  17. Schrell UM, Rittig MG, Anders M, et al.: Hydroxyurea for treatment of unresectable and recurrent meningiomas II: decrease in the size of meningiomas in patients treated with hydroxyurea. J Neurosurg 1997, 86:840–844.

    Article  PubMed  CAS  Google Scholar 

  18. Swinnen LJ, Barger GR, and Rushing EJ: Phase II study of hydroxyurea for unresectable meningioma. SWOG 2004.

  19. Chamberlain MC: Adjuvant combined modality therapy for malignant meningiomas. J Neurosurg 1996, 84:733–736.

    PubMed  CAS  Google Scholar 

  20. Yarbro JW: Mechanism of action of hydroxyurea. Semin Oncol 1992, 19:1–10.

    PubMed  CAS  Google Scholar 

  21. Goldsmith BJ, Wara WM, Wilson CB, et al.: Postoperative irradiation for subtotally resected meningiomas: a retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 1994, 80:195–201. Modern series establishing a dose response for fractionated radiation therapy in the treatment of meningioma.

    PubMed  CAS  Google Scholar 

  22. Milosevic MF, Frost PJ, Laperriere NJ, et al.: Radiotherapy for atypical or malignant intracranial meningioma. Int J Radiat Oncol Biol Phys 1996, 34:817–822. Excellent companion paper to the preceding reference.

    Article  PubMed  CAS  Google Scholar 

  23. Condra KS, Buatti JM, Mendenhall WM, et al.: Benign meningiomas: primary treatment selection affects survival. Int J Radiat Oncol Biol Phys 1997, 39:427–436.

    Article  PubMed  CAS  Google Scholar 

  24. Margalit NS, Lesser JB, Moche J, et al.: Meningiomas involving the optic nerve: technical aspects and outcomes for a series of 50 patients. Neurosurgery 2003, 53:523–532.

    Article  PubMed  Google Scholar 

  25. Debus J, Wuendrich M, Pirzkall A, et al.: High efficacy of fractionated stereotactic radiotherapy of large baseof-skull meningiomas: long-term results. J Clin Oncol 2001, 19:3547–3553.

    PubMed  CAS  Google Scholar 

  26. Mendenhall WM, Morris CG, Amdur RJ, et al.: Radiotherapy alone or after subtotal resection for benign skull base meningiomas. Cancer 2003, 98:1473–1482.

    Article  PubMed  Google Scholar 

  27. Glaholm J, Bloom HJ, Crow JH: The role of radiotherapy in the management of intracranial meningiomas: the Royal Marsden Hospital experience with 186 patients. Int J Radiat Oncol Biol Phys 1990, 18:755–761.

    PubMed  CAS  Google Scholar 

  28. Baumert BG, Villa S, Studer G, et al.: Early improvements in vision after fractionated stereotactic radiotherapy for primary optic nerve sheath meningioma. Radiother Oncol 2004, 72:169–174.

    Article  PubMed  Google Scholar 

  29. Turbin RE, Thompson CR, Kennerdell JS, et al.: A longterm visual outcome comparison in patients with optic nerve sheath meningioma managed with observation, surgery, radiotherapy, or surgery and radiotherapy. Ophthalmology 2002, 109:890–899.

    Article  PubMed  Google Scholar 

  30. Pitz S, Becker G, Schiefer U, et al.: Stereotactic fractionated irradiation of optic nerve sheath meningioma: a new treatment alternative. Br J Ophthalmol 2002, 86:1265–1268.

    Article  PubMed  CAS  Google Scholar 

  31. Becker G, Jeremic B, Pitz S, et al.: Stereotactic fractionated radiotherapy in patients with optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys 2002, 54:1422–1429.

    Article  PubMed  Google Scholar 

  32. Narayan S, Cornblath WT, Sandler HM, et al.: Preliminary visual outcomes after three-dimensional conformal radiation therapy for optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys 2003, 56:537–543.

    Article  PubMed  Google Scholar 

  33. Stieber VW, Munley M: Central nervous system tumors. In Intensity-Modulated Radiation Therapy (IMRT): A Clinical Perspective, edn 1. Edited by Mundt AJ, Roeske JC. Ontario: BC, Decker, Inc., 2005. Comprehensive analysis of the usefulness of IMRT in the treatment of central nervous system tumors.

    Google Scholar 

  34. Cardinale RM, Benedict SH, Wu Q, et al.: A comparison of three stereotactic radiotherapy techniques; ARCS versus noncoplanar fixed fields versus intensity modulation. Int J Radiat Oncol Biol Phys 1998, 42:431–436.

    Article  PubMed  CAS  Google Scholar 

  35. Zabel A, Thilmann C, Zuna I, et al.: Comparison of forward planned conformal radiation therapy and inverse planned intensity modulated radiation therapy for esthesioneuroblastoma. Br J Radiol 2002, 75:356–361.

    PubMed  CAS  Google Scholar 

  36. Grant W III, Cain RB: Intensity modulated conformal therapy for intracranial lesions. Med Dosim 1998, 23:237–241.

    Article  PubMed  Google Scholar 

  37. Baumert BG, Norton IA, Davis JB: Intensity-modulated stereotactic radiotherapy versus stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int J Radiat Oncol Biol Phys 2003, 57:580–592.

    Article  PubMed  Google Scholar 

  38. Pirzkall A, Debus J, Haering P, et al.: Intensity modulated radiotherapy (IMRT) for recurrent, residual, or untreated skull-base meningiomas: preliminary clinical experience. Int J Radiat Oncol Biol Phys 2003, 55:362–372.

    Article  PubMed  Google Scholar 

  39. Bolsi A, Fogliata A, Cozzi L: Radiotherapy of small intracranial tumours with different advanced techniques using photon and proton beams: a treatment planning study. Radiother Oncol 2003, 68:1–14.

    Article  PubMed  Google Scholar 

  40. Khoo VS, Oldham M, Adams EJ, et al.: Comparison of intensity-modulated tomotherapy with stereotactically guided conformal radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys 1999, 45:415–425.

    Article  PubMed  CAS  Google Scholar 

  41. Fuss M, Salter BJ, Sadeghi A, et al.: Fractionated stereotactic intensity-modulated radiotherapy (FS-IMRT) for small acoustic neuromas. Med.Dosim 2002, 27:147–154.

    Article  PubMed  Google Scholar 

  42. Huang E, Teh BS, Strother DR, et al.: Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 2002, 52:599–605.

    Article  PubMed  Google Scholar 

  43. Suzuki M, Nakamatsu K, Kanamori S, et al.: Feasibility study of the simultaneous integrated boost (SIB) method for malignant gliomas using intensity-modulated radiotherapy. Jpn J Clin Oncol 2003, 33:271–277.

    Article  PubMed  Google Scholar 

  44. Voynov G, Kaufman S, Hong T, et al.: Treatment of recurrent malignant gliomas with stereotactic intensity modulated radiation therapy. Am J Clin Oncol 2003, 25:606–611.

    Article  Google Scholar 

  45. Shaw E, Arusell R, Scheithauer B, et al.: Prospective randomized trial of low-versus high-dose radiation therapy in adults with supratentorial low-grade glioma: Initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/ Eastern Cooperative Oncology Group Study. J Clin Oncol 2002, 20:2267–2276.

    Article  PubMed  CAS  Google Scholar 

  46. Uy NW, Woo SY, Teh BS, et al.: Intensity-modulated radiation therapy (IMRT) for meningioma. Int J Radiat Oncol Biol Phys 2002, 53:1265–1270.

    Article  PubMed  Google Scholar 

  47. Flickinger JC, Kondziolka D, Maitz AH, et al.: Gamma knife radiosurgery of imaging-diagnosed intracranial meningioma. Int J Radiat Oncol Biol Phys 2003, 56:801–806.

    Article  PubMed  Google Scholar 

  48. Stafford SL, Pollock BE, Foote RL, et al.: Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery 2001, 49:1029–1037. Large, well-analyzed series of meningiomas treated with radiosurgery.

    Article  PubMed  CAS  Google Scholar 

  49. Pollock BE, Stafford SL, Utter A, et al.: Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small-to medium-size meningiomas. Int J Radiat Oncol Biol Phys 2003, 55:1000–1005.

    Article  PubMed  Google Scholar 

  50. Shin M, Kurita H, Sasaki T, et al.: Analysis of treatment outcome after stereotactic radiosurgery for cavernous sinus meningiomas. J Neurosurg 2001, 95:435–439.

    PubMed  CAS  Google Scholar 

  51. Chuang CC, Chang CN, Tsang NM, et al.: Linear accelerator-based radiosurgery in the management of skull-base meningiomas. J Neurooncol 2004, 66:241–249.

    Article  PubMed  Google Scholar 

  52. Subach BR, Lunsford LD, Kondziolka D, et al.: Management of petroclival meningiomas by stereotactic radiosurgery. Neurosurgery 1998, 42:437–443.

    Article  PubMed  CAS  Google Scholar 

  53. Lee JY, Niranjan A, McInerney J, et al.: Stereotactic radiosurgery providing long-term tumor control of cavernous sinus meningiomas. J Neurosurg 2002, 97:65–72.

    PubMed  Google Scholar 

  54. Nicolato A, Foroni R, Alessandrini F, et al.: The role of gamma knife radiosurgery in the management of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 2002, 53:992–1000.

    Article  PubMed  Google Scholar 

  55. Iwai Y, Yamanaka K, Ishiguro T: Gamma knife radiosurgery for the treatment of cavernous sinus meningiomas. Neurosurgery 2003, 52:517–524.

    Article  PubMed  Google Scholar 

  56. Eustacchio S, Trummer M, Fuchs I, et al.: Preservation of cranial nerve function following Gamma Knife radiosurgery for benign skull base meningiomas: experience in 121 patients with follow-up of 5 to 9.8 years. Acta Neurochir 2002, 84(Suppl):71–76.

    CAS  Google Scholar 

  57. Leber KA, Bergloff J, Pendl G: Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg 1998, 88:43–50.

    PubMed  CAS  Google Scholar 

  58. Stafford SL, Pollock BE, Leavitt JA, et al.: A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2003, 55:1177–1181. Well-done analysis of vision preservation after radiosurgery.

    Article  PubMed  Google Scholar 

  59. Stieber VW, de Guzman AF: Pituitary. In Principles and Practice of Radiation Oncology. Edited by Perez C, Brady L, Schmidt-Ullrich R, et al. New York: Lippincott Williams & Wilkins, 2003.

    Google Scholar 

  60. Kondziolka D, Flickinger JC, Perez B: Judicious resection and/or radiosurgery for parasagittal meningiomas: outcomes from a multicenter review Gamma Knife Meningioma Study Group. Neurosurgery 1998, 43:405–413.

    Article  PubMed  CAS  Google Scholar 

  61. Stafford SL, Perry A, Suman VJ, et al.: Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 1998, 73:936–942. Seminal reference on the prognostic factors of meningiomas.

    Article  PubMed  CAS  Google Scholar 

  62. Roberti F, Sekhar LN, Kalavakonda C, et al.: Posterior fossa meningiomas: surgical experience in 161 cases. Surg Neurol 2001, 56:8–20.

    Article  PubMed  CAS  Google Scholar 

  63. Stafford SL, Perry A, Leavitt JA, et al.: Anterior visual pathway meningiomas primarily resected between 1978 and 1988: the Mayo Clinic Rochester experience. J Neuroophthalmol 1998, 18:206–210. Describes the role of surgery in the treatment of optic pathway meningiomas.

    PubMed  CAS  Google Scholar 

  64. Barker FG: Craniotomy for the resection of metastatic brain tumors in the United States, 1988–2000: decreasing mortality and the effect of provider caseload. Cancer 2004, 100:999–1007.

    Article  PubMed  Google Scholar 

  65. Muhr C, Gudjonsson O, Lilja A, et al.: Meningioma treated with interferon-alpha, evaluated with [(11)C]-L-methionine positron emission tomography. Clin Cancer Res 2001, 7:2269–2276.

    PubMed  CAS  Google Scholar 

  66. Kaba SE, DeMonte F, Bruner JM, et al.: The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery 1997, 40:271–275.

    Article  PubMed  CAS  Google Scholar 

  67. Grunberg SM: The role of progesterone receptors in meningioma. Cancer Treat Res 1991, 58:127–137.

    PubMed  CAS  Google Scholar 

  68. Lamberts SW, Tanghe HL, Avezaat CJ, et al.: Mifepristone (RU 486) treatment of meningiomas. J Neurol Neurosurg Psychiatry 1992, 55:486–490.

    PubMed  CAS  Google Scholar 

  69. Johnson MD, Okedli E, Woodard A, et al.: Evidence for phosphatidylinositol 3-kinase-Akt-p7S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in meningioma cells. J Neurosurg 2002, 97:668–675.

    PubMed  CAS  Google Scholar 

  70. National Cancer Institute: Phase II Trial of STI571 (NSC716051) in patients with recurrent meningiomas. http://clinicalstudies.info.nih.gov/cgi/detail.cgi?A_03-C-0311.html. Accessed September 12, 2004.

  71. The North American Brain Tumor Consortium: Phase II Trial of STI571 in Patients with Recurrent Meningioma. http://www.nf.org/clinical_trials/nf2/meningioma/ STI571.htm. Accessed September 12, 2004.

  72. Blackledge G, Averbuch S: Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br J Cancer 2004, 90:566–572.

    Article  PubMed  CAS  Google Scholar 

  73. Kong YG, Su CB, Ren ZY, et al.: Measurement of epidermal growth factor receptor concentration in the pre-and postoperative serum in patients with meningiomas. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002, 24:427–429.

    PubMed  CAS  Google Scholar 

  74. National Cancer Institute: ZD1839 for Treatment of Recurrent or Progressive Malignant Astrocytoma or Glioblastoma and Recurrent or Progressive Meningioma: A Phase II Study with a Phase I Component for Patients Receiving enzyme-inducing antiepileptic drugs (EIAEDs). http://www.virtualtrials. com. Accessed September 12, 2004.

  75. National Cancer Institute: Erlotinib in Treating Patients With Recurrent Malignant Glioma or Recurrent or Progressive Meningioma. http://clinicaltrials. gov. Accessed September 12, 2004.

  76. Sebti SM: Blocked pathways: FTIs shut down oncogene signals. Oncologist 2003, 8(Suppl 3):30–38.

    Article  PubMed  CAS  Google Scholar 

  77. National Cancer Institute: Pediatric Brain Tumor Consortium. SCH 66336 in treating children with recurrent or progressive brain tumors. Accessible at http://clinicaltrials.gov/ct/show/ NCT00015899?order=12. Accessed September 12, 2004.

  78. Burke PA, DeNardo SJ, Miers LA, et al.: Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 2002, 62:4263–4272.

    PubMed  CAS  Google Scholar 

  79. National Cancer Institute: Phase I Trial and Pharmacokinetic Study of ABT-751, An Orally Bioavailable Tubulin Binding Agent, on a 7 Day and 21 Day Dosing Schedule in Pediatric Patients With Refractory Solid Tumors. Accessible at http://clinicalstudies. info.nih.gov/detail/A_2002-C-0141.html. Accessed September 12, 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMullen, K.P., Stieber, V.W. Meningioma: Current treatment options and future directions. Curr. Treat. Options in Oncol. 5, 499–509 (2004). https://doi.org/10.1007/s11864-004-0038-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-004-0038-y

Keywords

Navigation