Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 4, pp 329–340 | Cite as

Asymptotic and Bootstrap Tests for a Sequential Change-Point of Panel

  • Zhuoheng ChenEmail author
  • Yijun Hu
Mathematics
  • 7 Downloads

Abstract

We design monitoring procedures for the common change-point in a sequential panel data model. An asymptotic method and two new bootstrap methods are proposed to obtain critical values. We establish the asymptotic validity of the proposed bootstrap procedures. In simulation studies the empirical test size and the empirical test power values are investigated to show that the three tests are valid and have their own applications. At the same time, the estimations of an unknown change-point are obtained by using the proposed test statistic with these three methods.

Key words

change-point bootstrap panel data cumulative sum estimator mean shift 

CLC number

O 212.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chu C S J, Stinchcombe M, White H. Monitoring structural change[J]. Econometrica, 1996, 64(5): 1045–1065.CrossRefGoogle Scholar
  2. [2]
    Horváth L, Husková M, Kokoszka P, et al. Monitoring changes in linear models[J]. Journal of Statistical Planning and Inference, 2004, 126(1): 225–251.CrossRefGoogle Scholar
  3. [3]
    Aue A, Berkes I, Horváth L. Strong approximation for the sums of squares of augmented GARCH sequences[J]. Bernoulli, 2006, 12: 583–608.CrossRefGoogle Scholar
  4. [4]
    Aue A, Gabrys R, Horváth L, et al. Estimation of a change-point in the mean function of functional data[J]. Journal of Multivariate Analysis, 2009, 100(10): 2254–2269.CrossRefGoogle Scholar
  5. [5]
    Aue A, Horváth L, Reimherr M. Delay times of sequential procedures for multiple time series regression models[J]. Journal of Econometrics, 2009, 149(2): 174–190.CrossRefGoogle Scholar
  6. [6]
    Gombay E, Serban D. Monitoring parameter change in AR(p) time series models[J]. Journal of Multivariate Analysis, 2009, 100: 715–25.CrossRefGoogle Scholar
  7. [7]
    Hušková M, Kirch C. Bootstrapping sequential change-point tests for linear regression[J]. Metrika, 2012, 75(5):673–708.CrossRefGoogle Scholar
  8. [8]
    Berkes I, Gombay E, Horváth L, et al. Sequential change-point detection in GARCH(p, q) models[J]. Econometric Theory, 2004, 20: 1140–1167.CrossRefGoogle Scholar
  9. [9]
    Kirch C. Bootstrapping sequential change-point tests[J]. Sequential Analysis, 2008, 27(3): 330–349.CrossRefGoogle Scholar
  10. [10]
    Ciuperca G. Two tests for sequential detection of a change-point in a nonlinear model[J]. Journal of Statistical Planning and Inference, 2013, 143(10): 1719–1743.CrossRefGoogle Scholar
  11. [11]
    Bai J S. Common breaks in means and variances for panel data[J]. Journal of Econometrics, 2010, 157(1):78–92.CrossRefGoogle Scholar
  12. [12]
    Chen Z H, Hu Y J. Cumulative sum estimator for change-point in panel data[J]. Statistical Papers, 2017, 58(3): 707–728.CrossRefGoogle Scholar
  13. [13]
    Hušková M, Prášková Z, Steinebach J. On the detection of changes in autoregressive time series I. Asymptotics[J]. Journal of Statistical Planning and Inference, 2007, 137: 1243–1259.CrossRefGoogle Scholar
  14. [14]
    Chen Z H, Hu Y J. The asymptotic method of sequential change-point in panel data[J]. Journal of Mathematics, 2018, 38(4): 731–742(Ch).Google Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.School of Mathematical ScienceHuaqiao UniversityQuanzhou, FujianChina
  2. 2.School of Mathematics and StatisticsWuhan UniversityWuhan, HubeiChina

Personalised recommendations