Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 4, pp 295–304 | Cite as

Noether Theorem on Time Scales for Lagrangian Systems in Event Space

  • Yufei Shi
  • Yi ZhangEmail author
Mathematics
  • 10 Downloads

Abstract

The Noether symmetry and the conserved quantity on time scales in event space are studied in this paper. Firstly, the Lagrangian of parameter forms on time scales in event space are established. The Euler-Lagrange equations and the second Euler-Lagrange equations of variational calculus on time scales in event space are established. Secondly, based upon the invariance of the Hamilton action on time scales in event space under the infinitesimal transformations of a group, the Noether symmetry and the conserved quantity on time scales in event space are established. Finally, an example is given to illustrate the method and results.

Key words

time scales event space Lagrangian system symmetry conserved quantity 

CLC number

O 316 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hilger S. Ein maßkettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten [D]. Würzburg: Universität Würzburg, 1988.Google Scholar
  2. [2]
    Bohener M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications [M]. Boston: Birkhäuser, 2001.CrossRefGoogle Scholar
  3. [3]
    Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales [M]. Boston: Birkhäuser, 2003.CrossRefGoogle Scholar
  4. [4]
    Hilscher R, Zeidan. Hamilton-Jacobi theory over time scales and applications to linear-quadratic problems [J]. Nonlinear Analysis, 2012, 75: 932–950.CrossRefGoogle Scholar
  5. [5]
    Malinowska A B, Ammi M R S. Noether’s theorem for control problems on time scales [J]. International Journal of Difference and Equation, 2014, 9: 87–100.Google Scholar
  6. [6]
    Martins N, Torres D F M. Noether’s symmetry theorem for nabla problems of the calculus of variations [J]. Applied Mathematics Letters, 2010, 23: 1432–1438.CrossRefGoogle Scholar
  7. [7]
    Atici F M, Biles D C, Lebedinsky A. An application of time scales to economics [J]. Mathematical and Computer Modelling, 2006, 43: 718–726.CrossRefGoogle Scholar
  8. [8]
    Guseinov G S, Kaymakcalan B. On a disconjugacy criterion for second order dynamic equations on time scales [J]. Journal of Computational and Applied Mathematics, 2002, 141: 187–196.CrossRefGoogle Scholar
  9. [9]
    Bohner M. Calculus of variations on time scales [J]. Dynamic Systems and Applications, 2004, 13: 339–349.Google Scholar
  10. [10]
    Bartosiewicz Z, Torres D F M. Noether’s theorem on time scales [J]. Journal of Mathematical Analysis and Applications, 2008, 342: 1220–1226.CrossRefGoogle Scholar
  11. [11]
    Bartosiewicz Z, Martins N, Torres D F M. The second Euler-Lagrange equation of variational calculus on time scales [J]. European Journal of Control, 2011, 17: 9–18.CrossRefGoogle Scholar
  12. [12]
    Cai P P, Fu J L, Guo Y X. Noether symmetries of the non-conservative and nonholonomic systems on time scales [J]. Science China, Physics, Mechanics & Astronomy, 2013, 56: 1017–1028.CrossRefGoogle Scholar
  13. [13]
    Peng K K, Luo Y P. Dynamics symmetries of Hamiltonian system on time scales [J]. Journal of Mathematical Physics, 2014, 55: 042702.CrossRefGoogle Scholar
  14. [14]
    Song C J, Zhang Y. Noether theorem for Birkhoffian systems on time scales [J]. Journal of Mathematical Physics, 2015, 56: 102701.CrossRefGoogle Scholar
  15. [15]
    Zhang Y. Noether theory for Hamiltonian system on time scales [J]. Chinese Quarterly of Mechanics, 2016, 37: 214–224 (Ch).Google Scholar
  16. [16]
    Zu Q H, Zhu J Q. Noether theorem for nonholonomic non-conservative mechanical systems in phase space on time scales [J]. Journal of Mathematical Physics, 2016, 57: 082701.CrossRefGoogle Scholar
  17. [17]
    Synge J L. Classical Dynamics [M]. Berlin: Springer-Verlag, 1960.CrossRefGoogle Scholar
  18. [18]
    Mei F X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999 (Ch).Google Scholar
  19. [19]
    Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2009(Ch).Google Scholar
  20. [20]
    Zhang W W, Fang J H, Zhang B. Noether theorem of discrete Holonomic systems in event space [J]. Journal of Dynamics and Control, 2012, 10:117–120.Google Scholar
  21. [21]
    Xu R L, Fang J H, Zhang B. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass [J]. Acta Physica Sinica, 2013, 62: 154501 (Ch).Google Scholar
  22. [22]
    Zhang Y. Noether’s theory for Birkhoffian systems in the event space [J]. Acta Physica Sinica, 2008, 57: 2643–2648 (Ch).Google Scholar
  23. [23]
    Zhang Y. Parametric equations and its first integrals for Birkhoffian systems in the event space [J]. Acta Physica Sinica, 2008, 57: 2469–2653(Ch).Google Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.College of Mathematics and PhysicsSuzhou University of Science and TechnologySuzhou, JiangsuChina
  2. 2.Wuxi Furen Middle SchoolWuxi, JiangsuChina
  3. 3.College of Civil EngineeringSuzhou University of Science and TechnologySuzhou, JiangsuChina

Personalised recommendations