Advertisement

Quantification of Aromatic Amino Acids in Cordyceps fungi by Micellar Electrokinetic Capillary Chromatography

  • Xin Wei
  • Yaxia Su
  • Hankun HuEmail author
  • Xiangtang Li
  • Rui Xu
  • Yiming Liu
Biology
  • 14 Downloads

Abstract

A facile micellar electrokinetic chromatography (MEKC) method was developed for quantification of aromatic amino acids in Cordyceps fungi. The proposed MEKC method had linear calibration curves and detection limits at the μmol/L level. Contents of aromatic amino acids in Cordyceps were found in the range from 0.004 9 % to 0.028 0% for tryptophan (Trp), 0.036 6% to 0.078 1% for tyrosine (Tyr), and 0.029 1% to 0.136 2% for phenylalanine (Phe). Levels of amino acids in cultivated Cordyceps militaris were found higher than those in natural Cordyceps sinensis. Interestingly, the ratio of Tyr to its precursor, Phe, in C. sinensis (1.20 ± 0.091, n=3) was significantly higher than that in cultivated C. militaris (0.54 ± 0.170, n=3). This is likely because the enzyme-catalyzed in vivo biotransformation of Phe to Tyr is much more effective in natural C. sinensis, a biological hybrid of larva and parasitic fungus, than in cultivated C. militaris.

Key words

aromatic amino acids micellar electrokinetic capillary chromatography edible Cordyceps fungus cultivated Cordyceps militaris 

CLC number

R 91 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Das S K, Masuda M, Sakurai A, et al. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects [J]. Fitoterapia, 2010, 81(8): 961–968.CrossRefPubMedGoogle Scholar
  2. [2]
    Chen P X, Wang S A, Nie S P, et al. Properties of Cordyceps sinensis: A review [J]. Journal of Functional Foods, 2013, 5(2): 550–569.CrossRefGoogle Scholar
  3. [3]
    Zhou X W, Gong Z H, Ying S, et al. Cordyceps fungi: Natural products, pharmacological functions and developmental products [J]. Journal of Pharmacy and Pharmacology, 2009, 61(3): 279–291.CrossRefPubMedGoogle Scholar
  4. [4]
    Yue K, Ye M, Zhou Z, et al. The genus Cordyceps: A chemical and pharmacological review [J]. Journal of Pharmacy and Pharmacology, 2013, 65(4): 474–493.CrossRefPubMedGoogle Scholar
  5. [5]
    Chang Y, Hsu W H, Lu W J, et al. Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordy-ceps sinensis, in platelet activation [J]. Current Pharmaceutical Biotechnoly, 2015, 16(5): 451–461.CrossRefGoogle Scholar
  6. [6]
    Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis [J]. Journal of Pharmacology Science, 2015, 127(1): 53–56.CrossRefGoogle Scholar
  7. [7]
    Zhang H W, Lin Z X, Tung Y S, et al. Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease [J]. Cochrane Database Systematic Reviews, 2014, 12(12): CD008353.Google Scholar
  8. [8]
    Paterson R R. Cordyceps—A traditional Chinese medicine and another fungal therapeutic biofactory [J]. Phytochemistry, 2008, 69(7): 1469–1495.CrossRefPubMedGoogle Scholar
  9. [9]
    Shao P L, Zhao K J, Zhao N J, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury [J]. Life Sciences, 2003, 73(19): 2503–2513.CrossRefGoogle Scholar
  10. [10]
    Hur H. Chemical ingredients of Cordyceps militaris [J]. Mycobiology, 2008, 36(4): 233–235.CrossRefPubMedPubMedCentralGoogle Scholar
  11. [11]
    Huang H, Zhong J, Xie Q. Review of quality control methods for Cordyceps [J]. China Pharmacy, 2010, 19: 88–90 (Ch).Google Scholar
  12. [12]
    Wang J, Kan L, Nie S, et al. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultivated Cordyceps sinensis [J]. LWT-Food Science and Technology, 2015, 63(1): 2–7.CrossRefGoogle Scholar
  13. [13]
    Pencharz P B, Hsu J W, Ball R O. Aromatic amino acid requirements in healthy human subjects [J]. Journal of Nutrition, 2007, 137(6 Suppl 1): 1576S–1578S.CrossRefPubMedGoogle Scholar
  14. [14]
    Zhao J, Xie J, Wang L, et al. Advanced development in chemical analysis of Cordyceps [J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87(18): 271–289.CrossRefPubMedGoogle Scholar
  15. [15]
    Huang L F, Liang Y Z, Guo F Q, et al. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(5): 1155–1162.CrossRefPubMedGoogle Scholar
  16. [16]
    Hu H, Xiao L, Zheng B, et al. Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(26): 8059–8066.CrossRefPubMedPubMedCentralGoogle Scholar
  17. [17]
    Wei X, Xu N, Wu D, et al. Determination of branched-amino acid content in fermented Cordyceps sinensis mycelium by using FT-NIR spectroscopy technique [J]. Food and Biopro-cess Technology, 2014, 7(1): 184–190.CrossRefGoogle Scholar
  18. [18]
    Široká J, Martincová A, Pospíšilová M, et al. Assay of citrus flavonoids, troxerutin, and ascorbic acid in food supplements and pharmaceuticals by capillary zone electrophoresis [J]. Food Analytical Methods, 2013, 6(6): 1561–1567.CrossRefGoogle Scholar
  19. [19]
    Deeb S E, Wätzig H, El-Hady D A, et al. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis [J]. Electrophoresis, 2014, 35(1): 170–189.CrossRefPubMedGoogle Scholar
  20. [20]
    Yuan J, Cheng X, Hou Y. Studies on the components and pharmacological action of polysaccharide from Cordyceps sinensis [J]. Food Drug, 2005, 7(1): 45–48.Google Scholar
  21. [21]
    Mao X B, Eksriwong T, Chauvatcharin S, et al. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris [J]. Process Biochemistry, 2005, 40(5): 1667–1672.CrossRefGoogle Scholar
  22. [22]
    Kim S W, Hwang H J, Xu C P, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738 [J]. Journal of Applied Microbiology, 2003, 94(1): 120–126.CrossRefPubMedGoogle Scholar
  23. [23]
    Dong J Z, Lei C, Ai X R, et al. Selenium enrichment on Cordyceps militaris link and analysis on its main active components [J]. Applied Biochemistry and Biotechnology, 2012, 166(5): 1215–1224.CrossRefPubMedGoogle Scholar
  24. [24]
    Hsu T H, Shiao L H, Hsieh C, et al. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis [J]. Food Chemistry, 2002, 78(4): 463–469.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Xin Wei
    • 1
    • 2
  • Yaxia Su
    • 1
    • 2
  • Hankun Hu
    • 1
    Email author
  • Xiangtang Li
    • 2
  • Rui Xu
    • 2
  • Yiming Liu
    • 2
  1. 1.Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan, HubeiChina
  2. 2.Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA

Personalised recommendations