Enantioselective Chlorocyclization of Olefinic Amides with 1,3-Dichloro- 5, 5-Dimethylhydantoin (DCDMH) Catalyzed by (DHQD)2PHAL

  • Qingjun Zhou
  • Chao Guo
  • Xiwang Li
  • Pei He
  • Guichun Yang
  • Chune Dong
Chemistry and Biology
  • 2 Downloads

Abstract

An efficient catalytic asymmetric chlorocyclization of olefinic amides with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) using hydroquinidine 1,4-phthalazinediyl diether ((DHQD)2PHAL) as organocatalyst has been developed. Series of chiral chloro substituted isobenzofuran-1(3H)-imine derivatives were obtained in good yields (up to 85%) and enantioselectivities (up to 70% ee).

Key words

Asymmetric chlorocyclization olefinic amides 1,3-dichloro-5 5-dimethylhydantoin(DCDMH) 

CLC number

TP 305 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    French A N, Bissmire S, Wirth T. Iodine electrophiles in stereoselective reactions: Recent developments and synthetic applications [J]. Chem Soc Rev, 2004, 35(44): 354–362.CrossRefGoogle Scholar
  2. [2]
    Denmark S E, Kuester W E, Burk M T. Catalytic, asymmetric halofunctionalization of alkenes—A critical perspective [J]. Angew Chem Int Ed, 2012, 51(44): 10938–10953.CrossRefGoogle Scholar
  3. [3]
    Dobish M C, Johnston J N. Achiral counterion control of enantioselectivity in a Bronsted acid-catalyzed iodolactonization [J]. J Am Chem Soc, 2012, 134(14): 6068–6071.CrossRefPubMedPubMedCentralGoogle Scholar
  4. [4]
    Zhou L, Tan C K, Jiang X, et al. Asymmetric bromolactonization using amino-thiocarbamate catalyst [J]. J Am Chem Soc, 2010, 132(44): 15474–15476.CrossRefPubMedGoogle Scholar
  5. [5]
    Fang C, Paull D H, Hethcox J C, et al. Enantioselective iodolactonization of disubstituted olefinic acids using a bifunctional catalyst [J]. Org Lett, 2012, 14(24): 6290–6293.CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Murai K, Matsushita T, Nakamura A, et al. Kinetic resolution of β-substituted olefinic carboxylic acids by asymmetric bromolactonization [J]. Organic Letters, 2013, 15(10): 2526–2529.CrossRefPubMedGoogle Scholar
  7. [7]
    Chen J, Zhou L, Tan C K, et al. An enantioselective approach toward 3,4-dihydroisocoumarin through the bromocyclization of styrene-type carboxylic acids [J]. J Org Chem, 2012, 43(21): 999–1009.CrossRefGoogle Scholar
  8. [8]
    Tan C K, Le C, Yeung Y Y. Enantioselective bromolactonization of cis-1,2-disubstituted olefinic acids using an aminothiocarbamate catalyst [J]. Chem Commun, 2012, 48(46): 5793–5795.CrossRefGoogle Scholar
  9. [9]
    Murai K, Nakamura A, Matsushita T, et al. C3-symmetric trisimidazoline-catalyzed enantioselective bromolactonization of internal alkenoic acids [J]. Chem Eur J, 2012, 18(27): 8448–8453.CrossRefPubMedGoogle Scholar
  10. [10]
    Ikeuchi K, Ido S, Yoshimura S, et al. Catalytic desymmetrization of cyclohexadienes by asymmetric bromolactonization [J]. Org Lett, 2012, 14(23): 6016–6019.CrossRefPubMedGoogle Scholar
  11. [11]
    Wilking M, Muck-Lichtenfeld C, Daniliuc C G, et al. Enantioselective, desymmetrizing bromolactonization of alkynes [J]. J Am Chem Soc, 2013, 135(22): 8133–8136.CrossRefPubMedGoogle Scholar
  12. [12]
    Veitch G E, Jacobsen E N. Tertiary aminourea-catalyzed enantioselective iodolactonization [J]. Angew Chem Int Ed, 2010, 49(40): 7332–7335.CrossRefGoogle Scholar
  13. [13]
    Tungen J E, Nolsoe J M, Hansen T V. Asymmetric iodolactonization utilizing chiral squaramides [J]. Org Lett, 2012, 14 (23): 5884–5887.CrossRefPubMedGoogle Scholar
  14. [14]
    Paull D H, Fang C, Donald J R, et al. Bifunctional catalyst promotes highly enantioselective bromolactonizations to generate stereogenic C-Br bonds [J]. J Am Chem Soc, 2012, 134(27): 11128–11131.CrossRefPubMedPubMedCentralGoogle Scholar
  15. [15]
    Huang H, Zhu X, He G, et al. Controlled synthesis of 1, 3, 5-oxadiazin-2-ones and oxazolones through regioselective iodocyclization of ynamides [J]. Org Lett, 2015, 17(10): 2510–2513.CrossRefPubMedGoogle Scholar
  16. [16]
    Cheng Y A, Yu W Z, Yeung Y Y. An unexpected bromolactamization of olefinic amides using a three-component co-catalyst system [J]. J Org Chem, 2015, 81(2): 545–552.CrossRefPubMedGoogle Scholar
  17. [17]
    Zhang W, Liu N, Schienebeck C M, et al. Catalytic enantioselective halolactonization of enynes and alkenes [J]. Chem Eur J, 2012, 18(23): 7296–7305.CrossRefPubMedGoogle Scholar
  18. [18]
    Deng J, Yu S N, Li Y L. Enantioselective synthesis of 2-bromomethyl indolines via BINAP (S)-catalyzed bromoaminocyclization of allyl aniline [J]. Adv Synth & Catal, 2017, 359(14): 2499–2508.CrossRefGoogle Scholar
  19. [19]
    Commercon A, Ponsinet G. Diastereoselective chlorocyclofunctionalization of N-allylic trichloroacetamides: Synthesis of an analogue and potential precursor of RP49532 [J]. Tetrahedron Lett, 1990, 31 (27): 3871–3874.CrossRefGoogle Scholar
  20. [20]
    Whitehead D C, Yousefi R, Jaganathan A, et al. An organocatalytic asymmetric chlorolactonization [J]. J Am Chem Soc, 2010, 132(10): 3298–3300.CrossRefPubMedPubMedCentralGoogle Scholar
  21. [21]
    Yousefi R, Whitehead D C, Mueller J M, et al. On the chlorenium source in the asymmetric chlorolactonization reaction [J]. Org Lett, 2011, 13(4): 608–611.CrossRefPubMedGoogle Scholar
  22. [22]
    Fei N, Yin H, Wang S, et al. CuCl2-promoted 6-endo-dig chlorocyclization and oxidative aromatization cascade: efficient construction of 1-azaanthraquinones from N-propargylaminoquinones[J]. Org Lett, 2011, 13(16): 4208–4211.CrossRefPubMedGoogle Scholar
  23. [23]
    Jaganathan A, Staples R J, Borhan B. Kinetic resolution of unsaturated amides in a chlorocyclization reaction: concomitant enantiomer differentiation and face selective alkene chlorination by a single catalyst [J]. J Am Chem Soc, 2013, 135(39): 14806–14813.CrossRefPubMedGoogle Scholar
  24. [24]
    Jaganathan A, Borhan B. Chlorosulfonamide salts are superior electrophilic chlorine precursors for the organocatalytic asymmetric chlorocyclization of unsaturated amides [J]. Org Lett, 2014, 16(14): 3616–3619.CrossRefPubMedGoogle Scholar
  25. [25]
    Yu Y M, Huang Y N, Deng J. Catalytic asymmetric chlorocyclization of 2-vinylphenylcarbamates for synthesis of 1, 4-dihydro-2H-3, 1-benzoxazin-2-one derivatives [J]. Org Lett, 2017, 19 (5): 1224–1227.CrossRefPubMedGoogle Scholar
  26. [26]
    Han X, Zhou H B, Dong C E. Application of chiral squaramides from asymmetric organocatalysts to biologically active compounds [J]. Chem Rec, 2016, 16(2): 897–906.CrossRefPubMedGoogle Scholar
  27. [27]
    Lü W, Guo C, Dong Z, et al. C 3-symmetric cinchonine-squaramide recyclable efficient organocatalyst for tandem Michael addition-cyclization of malononitrile and nitrovinylphenols [J]. Tetrahedron: Asymmetry, 2016, 27(14-15): 670–674.CrossRefGoogle Scholar
  28. [28]
    Gao Y, Liu B, Zhou H B, et al. Recyclable BINOL-quininesquaramide as highly efficient organocatalyst for α-amination of 1,3-dicarbonyl compounds and α-cyanoacetates [J]. RSC Adv, 2015, 5: 24392–24398.CrossRefGoogle Scholar
  29. [29]
    Han X, Dong C E, Zhou H B. C 3-Symmetric cinchoninesquaramide-catalyzed asymmetric chlorolactonization of styrene-type carboxylic acids with 1,3-dichloro-5, 5-dimethylhydantoin: An efficient method to chiral isochroman-1-ones [J]. Adv Synth Catal, 2014, 356 (6): 1275–1280.CrossRefGoogle Scholar
  30. [30]
    Jaganathan A, Garzan A, Whitehead D C, et al. A catalytic asymmetric chlorocyclization of unsaturated amides [J]. Angew Chem Int Ed, 2011, 50 (11): 2593–2596.CrossRefGoogle Scholar
  31. [31]
    Toshimitsu A, Terao K, Uemura S. Organoselenium-induced cyclization of olefinic imidates and amides: Selective synthesis of lactams or iminolactones [J]. J Org Chem, 1987, 52(10): 2018–2026.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qingjun Zhou
    • 1
  • Chao Guo
    • 2
  • Xiwang Li
    • 2
  • Pei He
    • 2
  • Guichun Yang
    • 1
  • Chune Dong
    • 2
  1. 1.Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional MoleculesHubei UniversityWuhan, HubeiChina
  2. 2.School of Pharmaceutical SciencesWuhan UniversityWuhan, HubeiChina

Personalised recommendations