Skip to main content
Log in

High-temperature synthesis in nonpolar solvent for CsPbBr3 and CH3NH3PbBr3 perovskite nanocrystals with high-efficient luminescence

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

We report a method to synthesize both organicinorganic CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskite nanocrystals in nonpolar solvent at high temperature. The cesium oleate and CH3NH3Br (MABr) are prepared and then injected into the nonpolar solvent of octadecene including oleic acid, oleylamine, and lead halide. In the synthesis of organic-inorganic perovskites of CH3NH3PbBr3, the frequently-used polar solvent of dimethylformamide or other polar solvents are not used. The prepared CsPbBr3 nanocrystals are spherical nanoparticles with the diameter of 250 nm. The CH3NH3PbBr3 perovskites are micro- scale hexagonal nanoplatelets. The colloidal perovskites exhibit high-efficient fluorescence and excellent stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Q, Marco N D, Yang Y, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications [J]. Nano Today, 2015, 10(3): 355–396.

    Article  CAS  Google Scholar 

  2. Zhang F, Zhong H, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: Potential alternatives for display technology [J]. Acs Nano, 2015, 9(4): 4533–4542.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Lin H, Huang H, et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer [J]. Nano Letters, 2016, 16(2): 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  4. Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687–692.

    Article  CAS  PubMed  Google Scholar 

  5. Xing G, Mathews N, Lim S S, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing [J]. Nat Mater, 2014, 13(5): 476–480.

    Article  CAS  PubMed  Google Scholar 

  6. Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solutionprocessed mixed halide perovskite semiconductors [J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1421–1426.

    Article  CAS  PubMed  Google Scholar 

  7. Sun S, Yuan D, Xu Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature [J]. ACS Nano, 2016, 10(3): 3648–3657.

    Article  CAS  PubMed  Google Scholar 

  8. Nedelcu G, Protesescu L, Yakunin S, et al. Fast anionexchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I) [J]. Nano Letters, 2015, 15(8): 5635–5640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slavney A H, Hu T, Lindenberg A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications [J]. Journal of the American Chemical Society, 2016, 138(7): 2138–2141.

    Article  CAS  PubMed  Google Scholar 

  10. McMeekin D P, Sadoughi G, Rehman W, et al. A mixedcation lead mixed-halide perovskite absorber for tandem solar cells [J]. Science, 2016, 351(6269): 151–155.

    Article  CAS  PubMed  Google Scholar 

  11. Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499(7458): 316–319.

    Article  CAS  PubMed  Google Scholar 

  12. Ma M, Tang Q, Yang P, et al. Room-temperature fabrication of multi-deformable perovskite solar cells made in a three-dimensional gel framework [J]. RSC Advances, 2016, 6(86): 82933–82940.

    Article  CAS  Google Scholar 

  13. Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501(7467): 395–398.

    Article  CAS  PubMed  Google Scholar 

  14. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051.

    Article  CAS  PubMed  Google Scholar 

  15. Jeon N J, Lee H G, Kim Y C, et al. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells [J]. Journal of the American Chemical Society, 2014, 136(22): 7837–7840.

    Article  CAS  PubMed  Google Scholar 

  16. Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3 [J]. Science, 2013, 342(6156): 344–347.

    Article  CAS  PubMed  Google Scholar 

  17. Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341–344.

    Article  CAS  PubMed  Google Scholar 

  18. Im J H, Luo J, Franckevičius M, et al. Nanowire perovskite solar cell [J]. Nano Letters, 2015, 15(3): 2120–2126.

    Article  CAS  PubMed  Google Scholar 

  19. Hu H, Salim T, Chen B, et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes [J]. Scientific Reports, 2016, 6: 33546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li G, Fleetham T, Turner E, et al. Highly efficient and stable narrow-band phosphorescent emitters for OLED applications [J]. Advanced Optical Materials, 2015, 3(3): 390–397.

    Article  CAS  Google Scholar 

  21. Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687–692.

    Article  CAS  PubMed  Google Scholar 

  22. Xing J, Liu X F, Zhang Q, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers [J]. Nano Letters, 2015, 15(7): 4571–4577.

    Article  CAS  PubMed  Google Scholar 

  23. Xing G, Mathews N, Lim S S, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing [J]. Nat Mater, 2014, 13(5): 476–480.

    Article  CAS  PubMed  Google Scholar 

  24. Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nature Communications, 2015, 6: 8056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makarov N S, Guo S, Isaienko O, et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots [J]. Nano Letters, 2016, 16(4): 2349–2362.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Peng L, Liu J, et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers [J]. Advanced Materials, 2016, 28(21): 4040–4046.

    Article  CAS  PubMed  Google Scholar 

  27. Sichert J A, Tong Y, Mutz N, et al. Quantum size effect in organometal halide perovskite nanoplatelets [J]. Nano Letters, 2015, 15(10): 6521–6527.

    Article  CAS  PubMed  Google Scholar 

  28. Shamsi J, Dang Z, Bianchini P, et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range [J]. Journal of the American Chemical Society, 2016, 138(23): 7240–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sapori D, Kepenekian M, Pedesseau L, et al. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites [J]. Nanoscale, 2016, 8(12): 6369–6378.

    Article  CAS  PubMed  Google Scholar 

  30. Sun S, Yuan D, Xu Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature [J]. ACS Nano, 2016, 10(3): 3648–3657.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nature Materials, 2015, 14(6): 636–642.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Z, Shu Y, Tian Y, et al. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks [J]. Chemical Communications, 2015, 51(91): 16385–16388.

    Article  CAS  PubMed  Google Scholar 

  33. Eperon G E, Burlakov V M, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells [J]. Advanced Functional Materials, 2014, 24(1): 151–157.

    Article  CAS  Google Scholar 

  34. Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nature Communications, 2013, 4: 2761

    Article  PubMed  Google Scholar 

  35. Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nature Photonics, 2013, 7(6): 486–491.

    Article  CAS  Google Scholar 

  36. Conings B, Baeten L, De Dobbelaere C, et al. Perovskitebased hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach [J]. Advanced Materials, 2014, 26(13): 2041–2046.

    Article  CAS  PubMed  Google Scholar 

  37. Liang K, Mitzi D B, Prikas M T. Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique [J]. Chemistry of Materials, 1998, 10(1): 403–411.

    Article  CAS  Google Scholar 

  38. Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process [J]. Journal of the American Chemical Society, 2013, 136(2): 622–625.

    Article  PubMed  Google Scholar 

  39. Cohen B E, Gamliel S, Etgar L. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells [J]. APL Materials, 2014, 2(8): 081502.

    Article  Google Scholar 

  40. Dou L, Wong A B, Yu Y, et al. Atomically thin twodimensional organic-inorganic hybrid perovskites [J]. Science, 2015, 349(6255): 1518–1521.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Ha S T, Zhang Q, et al. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals [J]. ACS Nano, 2015, 9(1): 687–695.

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt L C, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(3): 850–853.

    Article  CAS  PubMed  Google Scholar 

  43. Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters, 2015, 15(6): 3692–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vybornyi O, Yakunin S, Kovalenko M V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals [J]. Nanoscale, 2016, 8(12): 6278–6283.

    Article  CAS  PubMed  Google Scholar 

  45. Hu L, Wang C, Kennedy R M, et al. The role of oleic acid: From synthesis to assembly of perovskite nanocuboid two-dimensional arrays [J]. Inorganic Chemistry, 2014, 54(3): 740–745.

    Article  PubMed  Google Scholar 

  46. Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nature Materials, 2015, 14(6): 636–642.

    Article  CAS  PubMed  Google Scholar 

  47. Luan M, Song J, Wei X, et al. Controllable growth of bulk cubic-phase CH3NH3PbI3 single crystal with exciting room-temperature stability [J]. CrystEngComm, 2016, 18(28): 5257–5261.

    Article  CAS  Google Scholar 

  48. Jang D M, Park K, Kim D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning [J]. Nano Letters, 2015, 15(8): 5191–5199.

    Article  CAS  PubMed  Google Scholar 

  49. Akkerman Q A, D’Innocenzo V, Accornero S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J]. Journal of the American Chemical Society, 2015, 137(32): 10276–10281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pedesseau L, Sapori D, Traore B, et al. Advances and promises of layered halide hybrid perovskite semiconductors [J]. ACS Nano, 2016, 10(11): 9776–9786.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhou or Ququan Wang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11374236, 11674254)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, Q., Cheng, Z. et al. High-temperature synthesis in nonpolar solvent for CsPbBr3 and CH3NH3PbBr3 perovskite nanocrystals with high-efficient luminescence. Wuhan Univ. J. Nat. Sci. 22, 429–434 (2017). https://doi.org/10.1007/s11859-017-1268-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-017-1268-8

Key words

CLC number

Navigation