Skip to main content
Log in

Effect of plasticizer poly(ethylene glycol) on the crystallization properties of stereocomplex-type poly (lactide acid)

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The effects of the plasticizer poly(ethylene glycol) (PEG) on crystallization properties of equimolar poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) blends were investigated. Formation of the stereocomplex-type poly(lactide acid) (sc-PLA) crystallites was confirmed by Wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) analyses. Sc-PLA crystallites without any homochiral poly(lactide acid) (hc-PLA) formed, as the result of the incorporation of the plasticizer PEG (more than or equal to 10%(wt)) at a processing temperature (240 °C). Moreover, when the M W of PEG reached 1 000 g · mol–1, the crystallizability of stereocomplex crystallites was the best. Isothermal crystallization kinetics further revealed that PEG could accelerate the crystallization rate of sc-PLA, with the optimum crystallization kinetic parameters being obtained at 10% (wt) PEG. Several crystallization kinetics equations were applied to describe the effect of PEG on the crystallization behavior of sc-PLA. The influence of PEG on the spherocrystal morphologies of sc-PLA was also investigated using polarized optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian H Y, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/ montmorillonite composite [J]. J Mater Sci, 2007, 42(9): 3244–3250.

    Article  CAS  Google Scholar 

  2. Qin Y Y, Yang J Y, Xue J. Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde [J]. J Mater Sci, 2015, 50(4):1150–1158.

    Article  CAS  Google Scholar 

  3. Ambrosio-Martí J, Fabra M J, Lopez-Rubio A, et al. An effect of lactic acid oligomers on the barrier properties of polylactide [J]. J Mater Sci, 2014, 49(8): 2975–2986.

    Article  Google Scholar 

  4. Ikada Y, Jamshidi K, Tsuji H, et al. Stereocomplex formation between enantiomeric poly(lactides) [J]. Macromolecules, 1987, 20(4): 904–906.

    Article  CAS  Google Scholar 

  5. Tsuji H, Fukui I. Enhanced thermal stability of poly(actide)s in the melt by enantiomeric polymer blending [J]. Polymer, 2003, 44(10): 2891–2896.

    Article  CAS  Google Scholar 

  6. Tsuji H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films [J]. Polymer, 1999, 40(24): 6699–6708.

    Article  CAS  Google Scholar 

  7. Rathi S R, Coughlin E B, Hsu S L, et al. Effect of midblock on the morphology and properties of blends of ABA triblock copolymers of PDLA-mid-block-PDLA with PLLA [J]. Polymer, 2012, 53(14): 3008–3016.

    Article  CAS  Google Scholar 

  8. Brochu S, Prudhomme R E, Barakat I, et al. Stereocomplexation and morphology of polylactides [J]. Macromolecules, 1995, 28(15): 5230–5239.

    Article  CAS  Google Scholar 

  9. Tsuji H, Hyon S H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Caloorimetric studies on blend films cast from dilute solution [J]. Macromolecules, 1991, 24(20): 5651–5656.

    Article  CAS  Google Scholar 

  10. Tsuji H, Hyon S H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 5. Calorimetric and morphology studies on the stereocomplex formed in acetonitrile solution [J]. Macromolecules, 1992, 25(11): 2940–2946.

    Article  CAS  Google Scholar 

  11. Tsuji H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 9. Stereocomplexation from the melt [J]. Macromolecules, 1993, 26(25): 6918–6926.

    Article  CAS  Google Scholar 

  12. Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends [J]. Macromol Chem Phys, 1996, 197(10): 3483–3499.

    Article  CAS  Google Scholar 

  13. Bao R Y, Yang W, Jiang W R, et al. Stereocomplex formation of high-molecular-weight polylactide: A low temperature approach [J]. Polymer, 2012, 53(24): 5449–5454.

    Article  CAS  Google Scholar 

  14. Saeidlou S, Huneault M A, Li H B, et al. Effect of nucleation and plasticization on the stereocomplex formation between enantiomeric poly(lactic acid)s [J]. Polymer, 2013, 54(21): 5762–5770.

    Article  CAS  Google Scholar 

  15. Ljungberg N, Wesslén B. Preparation and properties of plasticized poly(lactic acid) films [J]. Biomacromolecules, 2005, 6(3): 1789–1796.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Huneault M A. Effect of plasticization on the crystallization of poly(lactic acid) [J]. Polymer, 2007, 48(23): 6855–6866.

    Article  CAS  Google Scholar 

  17. Labrecque L V, Kumar R A, Dave V, et al. Citrate ester as plasticizers for poly(lactic acid) [J]. J Appl Polym Sci, 1997, 66(8): 1507–1513.

    Article  CAS  Google Scholar 

  18. Ljungberg N, Wesslén B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid) [J]. J Appl Polym Sci, 2002, 86(5): 1227–1234.

    Article  CAS  Google Scholar 

  19. Kulinski Z, Piorkowska E, Gadzinowska K, et al. Plasticization of poly(L-lactide) with poly(propylene glycol) [J]. Biomacromolecules, 2006, 7(7): 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  20. Jacobsen S, Fritz H G. Plasticizing polylactide—The effect of different plasticizers on the mechanical properties [J]. Polym Eng Sci, 1999, 39(7): 1303–1310.

    Article  CAS  Google Scholar 

  21. Hu Y, Hu Y S, Topolkaraev V, et al. Aging of poly (lactide)/ poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity [J]. Polymer, 2003, 44(19): 5711–5720.

    Article  CAS  Google Scholar 

  22. Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(L-lactide) [J]. Polymer, 2005, 46(23): 10290–10300.

    Article  CAS  Google Scholar 

  23. Xiao H W, Li P, Ren X M, et al. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc [J]. J Appl Polym Sci, 2010, 118(6): 3558–3569.

    Article  CAS  Google Scholar 

  24. Xiao H W, Lu W, Yeh J T. Effect of plasticizer on the crystallization behavior of poly(lactic acid) [J]. J ApplPolym Sci, 2009, 113(1): 112–121.

    Article  CAS  Google Scholar 

  25. Cartier L, Okihara T, Lotz B. Triangular polymer single crystal: stereocomplexs, twins, and frustrated structures [J]. Macromolecules, 1997, 30(20): 6313–6322.

    Article  CAS  Google Scholar 

  26. Hoogsteen W, Postema A R, Penning A J, et al. Crystal structure, conformation, and morphology of solution-spun poly(L-lactide) fibers [J]. Macromolecules, 1990, 23(2): 634–642.

    Article  CAS  Google Scholar 

  27. Narita J, Katagiri M, Tsuji H. Highly enhanced nucleating effect of melt-recrystallized stereocomplex crystallites on poly(L-lactic acid) crystallization [J]. Macromol Mater Eng, 2011, 296(10): 887–893.

    Article  CAS  Google Scholar 

  28. Wei X F, Bao R Y, Cao Z Q, et al. Greatly accelerated crystallization of poly(lactic acid): Cooperative effect of stereocomplex crystallites and polyethylene glycol [J]. Colloid Polym Sci, 2014, 292(1): 163–172.

    Article  CAS  Google Scholar 

  29. Zhang J, Sato H, Tsuji H, et al. Infrared spectroscopic study of CH3...O=C interaction during poly(L-lactide)/poly (Dlactide) stereocomplex formation [J]. Macromolecules, 2005, 38(5): 1822–1828.

    Article  CAS  Google Scholar 

  30. Cebe P, Hong S D. Crystallization behavior of poly(etheretherketone) [J]. Polymer, 1986, 27(8): 1183–1192.

    Article  CAS  Google Scholar 

  31. He D R, Wang Y M, Shao C G, et al. Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid) [J]. Polym Test, 2013, 32(6): 1088–1093.

    Article  CAS  Google Scholar 

  32. Xu T, Zhang A J, Zhao Y Q, et al. Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent [J]. Polym Test, 2015, 45: 101–106.

    Article  CAS  Google Scholar 

  33. Khare A, Mitra A, Radhakrishnan S. Effect of CaCO3, on the crystallization behaviour of polypropylene [J]. J Mater Sci, 1996, 31(21): 5691–5695.

    Article  CAS  Google Scholar 

  34. Hui S. Research on the Course of Isothermal Crystallization Kinetics of Polymer in Limited Volume Unit [D]. Tianjin: Tianjin Polytechnic University, 2004(Ch).

    Google Scholar 

  35. Xiao H W, Liu F, Jiang T, et al. Kinetics and crystal structure of isothermal crystallization of poly(lactic acid) plasticized with triphenyl phosphate[J]. J Appl Polym Sci, 2010, 117(5): 2984–2992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cui.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (51403160), and the Opening Project of Hubei Key Laboratory Biomass Fibers and Eco-dyeing & Finishing (STRZ2017009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Zhang, R., Wang, Y. et al. Effect of plasticizer poly(ethylene glycol) on the crystallization properties of stereocomplex-type poly (lactide acid). Wuhan Univ. J. Nat. Sci. 22, 420–428 (2017). https://doi.org/10.1007/s11859-017-1267-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-017-1267-9

Key words

CLC number

Navigation