Skip to main content
Log in

Tensor-product representation of Laplace-Runge-Lenz vector for two-body Kepler systems

  • Mathematics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

A unified tensor-product representation of Laplace-Runge-Lenz (LRL) vector about inversely-quadric and centric-force systems is derived. For a two-body Kepler system under gravitation or Coulomb force, the modified and unified tensor- product representation of LRL vector is also deduced by using an effective single-body description. Some properties of the vector are numerated and proved. Conservation of this vector is demonstrated in the tensor-product form. The energy formula for a bound-state elliptic orbit is simply derived via a novel approach. For a two-body system, the R-test rules for every kinds of Kepler’s motion are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Runge C. Vektoranalysis [M]. Charleston: Nabu Press, 2009.

    Google Scholar 

  2. Goldstein H. Prehistory of the “Runge-Lenz” vector [J]. Am J Phys, 1975, 43(8): 737–738.

    Article  Google Scholar 

  3. Goldstein H, More on the prehistory of the Laplace or Runge-Lenz vector [J]. Am J Phys, 1976, 44: 1123–1124.

  4. Kaplan H. The Runge-Lenz vector as an “extra” constant of motion [J]. Am J Phys, 1986, 54(2): 157–161.

    Article  Google Scholar 

  5. Dahl J P. Physical origin of the Runge-Lenz vector [J]. J Phys A: Math Gen, 1997, 30: 6831–6836.

    Article  Google Scholar 

  6. Dahl J P. Physical interpretation of the Runge-Lenz vector [J]. Phys Lett, 1968, 27A: 62–63.

    Article  Google Scholar 

  7. Kryukov N, Oks E. Supergeneralized Runge-Lenz vector in the problem of two Coulomb or Newton centers [J]. Physical Review A, 2012, 85(5): 054503.

    Article  Google Scholar 

  8. Aguiar C E, Barroso M F. The Runge-Lenz vector and the perturbed Rutherford scattering [J]. Am J Phys, 1996, 64: 1042–1048.

    Article  Google Scholar 

  9. Yang X L, Lieber M, Chan F T. The Runge-Lenz vector for the two-dimensional hydrogen atom [J]. Am J Phys, 1991, 59(3): 231–232.

    Article  Google Scholar 

  10. Brill D R, Goel D. Light bending and perihelion precession: A unified approach [J]. Am J Phys, 1999, 67: 316–319.

    Article  Google Scholar 

  11. Rangwala A A, Kulkarni V H, Rindani A A. Laplace-Runge-Lenz vector for a light ray trajectory in r-1 media [J]. Am J Phys, 2001, 69: 803–809.

    Article  CAS  Google Scholar 

  12. Yoshida T. Considerations on the precessing orbit via a rotating Laplace-Runge-Lenz vector [J]. Am J Phys, 1987, 55(12): 1133–1136.

    Article  Google Scholar 

  13. Chen A C. Coulomb-Kepler problem and the harmonic oscillator [J]. Am J Phys, 1987, 55: 250–252.

    Article  Google Scholar 

  14. Liu Y, Zeng J. Runge-Lenz vector and raising and lowering operator [J]. Acta Phys Sin, 1997, 46(7): 1267–1272.

    Google Scholar 

  15. Nikitin A G, Laplace-Runge-Lenz vector for arbitrary spin [J]. J Math Phys, 2013,54: 123506.

  16. Galikova V, Kovacik S, Presnajder P. Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space [J]. J Math Phys, 2013,54: 122106.

    Article  Google Scholar 

  17. Bacry H, Ruegg H, Souriau J M. Dynamical groups and spherical potentials in classical mechanics [J]. Commun Math Phys, 1966, 3: 323–333.

    Article  CAS  Google Scholar 

  18. Mukunda N. Dynamical symmetries and classical mechanics [J]. Phys Rev, 1967, 155:1383–1386.

    Article  CAS  Google Scholar 

  19. McIntosh H V. Symmetry and degeneracy [J]. Group Theory and Its Applications, 1971, 428(12): 75–144.

    Article  Google Scholar 

  20. O’Connell R C, Jagannathan K. Illustrating dynamical symmetries in classical mechanics: The Laplace-Runge-Lenz vector revisited [J]. Am J Phys, 2003, 71(3): 243–246.

    Article  Google Scholar 

  21. Uri B Y. Laplace-Runge-Lenz symmetry in general rotationally symmetric systems [J]. J Math Phys, 2010,51: 122902.

    Article  Google Scholar 

  22. Fradkin D M. Existence of the dynamical symmetries O4 and SU3 for all classical central potential problems [J]. Prog Theor Phys, 1967, 37: 798–812.

    Article  Google Scholar 

  23. Uri B Y. Laplace-Runge-Lenz-like new constant in manybody systems from post-Newtonian dynamics [J]. J Phys A: Math Theor, 2009,42: 375210.

    Article  Google Scholar 

  24. Yoshida T. Determination of the generalized Laplace-Runge-Lenz vector by an inverse matrix method [J]. Am J Phys, 1989, 57(4): 376–377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoquan Zhou.

Additional information

Foundation item: Supported by the National Teaching Team Foundation (202276003)

Biography: ZHOU Guoquan, male, Ph.D., Associate professor, research direction: nonlinear integrable equations and field theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G. Tensor-product representation of Laplace-Runge-Lenz vector for two-body Kepler systems. Wuhan Univ. J. Nat. Sci. 22, 51–56 (2017). https://doi.org/10.1007/s11859-017-1215-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-017-1215-8

Keywords

CLC number

Navigation