Skip to main content
Log in

Convergence of the three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation to the incompressible Euler equation

  • Mathematics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors. When the Debye length and viscosity coefficients are sufficiently small, the initial value problem of the model has a unique smooth solution in the time interval where the corresponding incompressible Euler equation has a smooth solution. We also establish a sharp convergence rate of smooth solutions for three-dimensional compressible viscous Navier-Stokes-Poisson-Kortewe equation towards those for the incompressible Euler equation in combining quasi-neutral limit and viscosity limit. Moreover, if the incompressible Euler equation has a global smooth solution, the maximal existence time of three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation tends to infinity as the Debye length and viscosity coefficients goes to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn J E, Serrin J. On the thermodynamics of interstitial working [J]. Arch Ration Mech Anal, 1985,88: 95–133.

    Article  Google Scholar 

  2. Anderson D M, McFadden G B, Wheeler A A. Diffuse-interface methods in fluid mech [J]. Ann Rev Fluid Mech, 1998, 30: 139–165.

    Article  Google Scholar 

  3. Cahn J W, Hilliard J E. Free energy of a nonuniform system [J]. I Interfacial Free Energy, J Chem Phys, 1998, 28: 258–267.

    Google Scholar 

  4. Klainerman S, Majda A. Singular limits of quasilinear hydrobolic systems with large parameters and the incompressible limit of compressible fluids [J]. Comm Pure Appl Math, 1981, 34: 481–524.

    Article  Google Scholar 

  5. Lions P L, Masmoudi N. Incompressible limit for a viscous compressible fluid [J]. J Math Pures Appl, 1998, 77(9): 585–627.

    Article  Google Scholar 

  6. Alazard T. Low Mach number limit of the full Navier-Stokes equations [J]. Arch Rational Mech Anal, 2006,180: 1–73.

    Article  Google Scholar 

  7. Bresch D, Desjardins B, Grenier E, et al. Low Mach number limit of viscous ploytropic flows: Formal asymptotics in the periodic case [J]. Stud Appl Math, 2002,109: 125–140.

    Article  Google Scholar 

  8. Desjardins B, Grenier E. Low Mach number limit of viscous compressible flows in the whole space [J]. R Soc Lond Proc Ser A Math Phys Eng Sci, 1999, 455: 2271–2279.

    Article  Google Scholar 

  9. Diaz J I, Lerena M B. On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamic [J]. Math Methods Appl Sci, 2002,12: 1401–1402.

    Article  Google Scholar 

  10. Hoff D. The zero-Mach limit of compressible flows [J]. Comm Math Phys, 1998,192: 543–554.

    Article  Google Scholar 

  11. Hu X P, Wang D H. Low Mach numberlimit to the three-dimensional full compressible magnetohydrodynamic flows [J]. SIAM J Math Anal, 2009, 41: 1272–1294.

    Article  Google Scholar 

  12. Masmoudi N. Incompressible, inviscid limit of the compressible Navier-Stokes system [J]. Ann Inst H Poincare Anal Non Lineaire, 2001,18: 199–224.

    Article  Google Scholar 

  13. Metivier G, Schochet S. The incompressible limit of the non-isentropic Euler equations [J]. Arch Rational Mech Anal, 2001, 158: 61–90.

    Article  Google Scholar 

  14. Yong W A. Basic aspects of hyperbolic relaxation systems, in Advances in the theory of shock waves [C] // Prog Nonlinear Differential Equations Appl 47. Boston: Birkhauser, 2001: 259–305.

    Google Scholar 

  15. Yong W A. Singular perturbations of first-order hyperbolic systems with stiff source terms [J]. J Differential Equations, 1999, 155: 89–132.

    Article  Google Scholar 

  16. Brenier Y, Yong W A. Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism [J]. J Math Phys, 2005,46: 062305.

    Article  Google Scholar 

  17. Li Y P. From a multidimensional quantum hydrodynamic model to the classical driftdiffusion equation [J]. Quart Appl Math, 2009, 67: 489–502.

    Article  Google Scholar 

  18. Li Y P. Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations [J]. J Differential Equations, 2012, 252: 2725–2738.

    Article  Google Scholar 

  19. Peng Y J, Wang Y G, Yong W A. Quasi-neutral limit of the non-isentropic Euler-Poisson systems [J]. Proc Roy Soc Endinburgh, 2006, A136: 1013–1026.

    Article  Google Scholar 

  20. Bresch D, Desjardins B, Ducomet B. Quasi-neutral limit for a viscous capillary model of plasma [J]. Ann Inst Henri Poincare Anal Nonlinear, 2005, 22: 1–9.

    Article  Google Scholar 

  21. Li Y P, Yong W A. Quasi-neutral limit in a three-dimensional compressible Navier-Stokes-Poisson-Korteweg model [J]. IMA J Appl Math, 2015, 80: 712–727.

    Article  Google Scholar 

  22. Hattori H, Li D. Solutions for two dimensional system for materials of Korteweg type [J]. SIAM J Math Anal, 1994, 25: 85–98.

    Article  Google Scholar 

  23. Hattori H, Li D. Global solutions of a high dimensional system for Korteweg materials [J]. J Math Anal Appl, 1996, 198: 84–97.

    Article  Google Scholar 

  24. Kato T. Nonstationary flow of viscous and ideal fluids in R3 [J]. J Funct Anal, 1972, 9: 296–305.

    Article  Google Scholar 

  25. McGrath F J. Nonstationary plane flow of viscous and ideal fluds [J]. Arch Rational Mech Anal, 1968, 27: 229–348.

    Article  Google Scholar 

  26. Majda A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables [M]. New York: Springer-Verlag, 1984.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhou.

Additional information

Foundation item: Supported by the Research Grant of Department of Education of Hubei Province (Q20142803)

Biography: ZHOU Fang, female, Associate professor, research direction: partial differential equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F. Convergence of the three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation to the incompressible Euler equation. Wuhan Univ. J. Nat. Sci. 22, 19–28 (2017). https://doi.org/10.1007/s11859-017-1212-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-017-1212-y

Keywords

CLC number

Navigation