Wuhan University Journal of Natural Sciences

, Volume 20, Issue 5, pp 421–429 | Cite as

Folding kinetics of HDV ribozyme with C13A:G82U and A16U:U79A mutations

Biology and Enviromental Science


Gene mutations influence the folding kinetics of hepatitis delta virus (HDV) ribozyme. In this work, we study the effect of the double mutation on the folding kinetics of HDV ribozyme. By using the master equation method combined with RNA folding free energy landscape, we predict the folding kinetics of C13A:G82U and A16U:U79A mutated HDV sequences. Their folding pathways are identified by recursively searching the states with high net flux-in(out) population starting from the native state. The results indicate that the folding kinetics of C13A:G82U mutation sequence is bi-phasic, which is similar to the wild type (wtHDV) sequence. While the folding kinetics of A16U:U79A mutation sequence is mono-phasic, it quickly folds to the native state in 30 s. Thus, the folding kinetics of double mutated HDV ribozyme depends on the mutation sites.


hepatitis delta virus (HDV) ribozyme master equation method folding kinetics recursive search 

CLC number

O 469 Q 61 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alvarado-Mora M V, Locarnini S, Rizzetto M, et al. An update on HDV: Virology, pathogenesis and treatment [J]. Antiviral Therapy, 2013, 18(3): 541–548.CrossRefPubMedGoogle Scholar
  2. [2]
    Rizzetto M, Canese M G, Ariò S, et al. Immunofluorescence detection of new antigen-antibody system (d/anti-d) associated to hepatitis B virus in liver and in serum of HBsAg carriers [J]. Gut, 1977, 18(2): 997–1003.PubMedCentralCrossRefPubMedGoogle Scholar
  3. [3]
    Noureddin M, Gish R. Hepatitis delta: Epidemiology, diagnosis and management 36 years after discovery [J]. Curr Gastroenterol Rep, 2014, 16(1): 365.PubMedCentralCrossRefPubMedGoogle Scholar
  4. [4]
    Kapral G J, Jain S, Doudna J A, et al. New tools provide a second look at HDV ribozyme structure, dynamics and cleavage [J]. Nucleic Acids Research, 2014, 42(20): 12833–12846.PubMedCentralCrossRefPubMedGoogle Scholar
  5. [6]
    Perrotta A T, Been M D. The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant [J]. Nucl Acids Res, 1990, 18(23): 6821–6827.PubMedCentralCrossRefPubMedGoogle Scholar
  6. [7]
    Chadalavada D M, Cerrone-szakal A L, Bevilacqua P C. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions [J]. RNA, 2007, 13(12): 2189–2201.PubMedCentralCrossRefPubMedGoogle Scholar
  7. [8]
    Chadalavada D M, Senchak S E, Bevilacqua P C. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots [J]. Journal of Molecular Biology, 2002, 317(4): 559–575.CrossRefPubMedGoogle Scholar
  8. [9]
    Thaplyal P, Ganguly A, Hammes-Schiffer S, et al. Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density [J]. Biochemistry, 2015, 54(12): 2160–2175.CrossRefPubMedGoogle Scholar
  9. [10]
    Been M, Perrotta A, Rosenstein S. Secondary structure of the self-cleaving RNA of hepatitis delta virus: applications to catalytic RNA design [J]. Biochemistry, 1992, 31(47): 11843–11852.CrossRefPubMedGoogle Scholar
  10. [11]
    Wu H N, Lee J Y, Huang H W, et al. Mutagenesis analysis of ribozyme a hepatitis delta virus genomic [J]. Nucl Acids Res, 1993, 21(18): 4193–4199.PubMedCentralCrossRefPubMedGoogle Scholar
  11. [12]
    Tanner N K, Schaff S, Thill G, et al. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses [J]. Curr Biol, 1994, 4(6): 488–498.CrossRefPubMedGoogle Scholar
  12. [13]
    Kumar P K, Suhl Y A, Miyashiro H, et al. Random mutations to evaluate the role of bases at two important single-stranded regions of genomic HDV ribozyme [J]. Nucl Acids Res, 1992, 20(15): 3919–3924.PubMedCentralCrossRefPubMedGoogle Scholar
  13. [14]
    Chen J W, Gong S, Wang Y J, et al. Kinetic partitioning mechanism of HDV ribozyme folding [J]. The Journal of Chemical Physics, 2014, 140(2): 025102.CrossRefPubMedGoogle Scholar
  14. [15]
    Zhao P N, Zhang W B, Chen S J. Predicting secondary structural folding kinetics for nucleic acids [J]. Biophysical Journal, 2010, 98(8): 1617–1625.PubMedCentralCrossRefPubMedGoogle Scholar
  15. [16]
    Zhang W B, Chen S. Master equation approach to finding the rate-limiting steps in biopolymer folding [J]. The Journal of Chemical Physics, 2003, 118(7): 3413–3420.PubMedCentralCrossRefPubMedGoogle Scholar
  16. [17]
    Zhao P N, Zhang W B, Chen S J. Cotranscriptional folding kinetics of ribonucleic acid secondary structures [J]. The Journal of Chemical Physics, 2011, 135(24): 245101.PubMedCentralCrossRefPubMedGoogle Scholar
  17. [18]
    Mathews D H, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure [J]. Journal of Molecular Biology, 1999, 288(5): 911–940.CrossRefPubMedGoogle Scholar
  18. [19]
    Xia T, Santalucia J, Burkard M E, et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with watson-crick base pairs [J]. Biochemistry, 1998, 37(42): 14719–14735.CrossRefPubMedGoogle Scholar
  19. [20]
    Rivas E, Eddy S R. A dynamic programming algorithm for RNA structure prediction including pseudoknots [J]. Journal of Molecular Biology, 1999, 285(5): 2053–2068.CrossRefPubMedGoogle Scholar
  20. [21]
    Rietveld K, Bosch L, Pleij C. A new principle of RNA folding based on pseudoknotting [J]. Nucl Acids Res, 1985, 13(5): 1717–1731.PubMedCentralCrossRefPubMedGoogle Scholar
  21. [22]
    Dam E, Pleij K, Draper D. Structural and functional aspects of RNA pseudoknots [J]. Biochemistry, 1992, 31(47): 11665–11675.CrossRefPubMedGoogle Scholar
  22. [23]
    Zhang W B, Chen S J. Exploring the complex folding kinetics of RNA hairpins: I. General folding kinetics analysis [J]. Biophysical Journal, 2006, 90(3): 765–777.PubMedCentralCrossRefPubMedGoogle Scholar
  23. [24]
    Zhang W B, Chen S J. Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states [J]. Biophysical Journal, 2006, 90(3): 778–787.PubMedCentralCrossRefPubMedGoogle Scholar
  24. [25]
    Tan Z J, Chen S J. Salt contribution to RNA tertiary structure folding stability [J]. Biophysical Journal, 2011, 101(1): 176–187.PubMedCentralCrossRefPubMedGoogle Scholar
  25. [26]
    Tan Z J, Chen S J. Predicting ion binding properties for RNA tertiary structures [J]. Biophysical Journal, 2010, 99(5): 1565–1576.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yanjuan Zou
    • 1
  • Yujie Wang
    • 1
  • Sha Gong
    • 1
  • Wenbing Zhang
    • 1
  1. 1.School of Physics and TechnologyWuhan UniversityWuhan, HubeiChina

Personalised recommendations