Wuhan University Journal of Natural Sciences

, Volume 20, Issue 5, pp 386–390 | Cite as

A method of estimating the eigenstates of density operator

Computer Science

Abstract

We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive “yes/no” measurements to scan the Bloch sphere and approximately yields the eigenstates. This result is based on the quantum method of types and implies a relationship between the typical subspace and the Young frame.

Keywords

quantum state estimation eigenstate density operator 

CLC number

TP 305 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bennett C H, Harrow A W, Lloyd S. Universal quantum data compression via nondestructive tomography[J]. Physical Review A, 2006, 73(3): 032336.CrossRefGoogle Scholar
  2. [2]
    James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits [J]. Physical Review A, 2001, 64(5): 052312.CrossRefGoogle Scholar
  3. [3]
    Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases [J]. Physical Review Letters, 2010, 105(3): 030406.CrossRefPubMedGoogle Scholar
  4. [4]
    Lvovsky A I, Raymer M G. Continuous-variable optical quantum-state tomography [J]. Reviews of Modern Physics, 2009, 81(1): 299.CrossRefGoogle Scholar
  5. [5]
    Gross D, Liu Y K, Flammia S T, et al. Quantum state tomography via compressed sensing [J]. Physical Review Letters, 2010, 105(15): 150401.CrossRefPubMedGoogle Scholar
  6. [6]
    Christandl M, Renner R. Reliable quantum state tomography [J]. Physical Review Letters, 2012, 109(12): 120403.CrossRefPubMedGoogle Scholar
  7. [8]
    Vidal G, Latorre J I, Pascual P, et al. Optimal minimal measurements of mixed states [J]. Physical Review A, 1999, 60(1): 126.CrossRefGoogle Scholar
  8. [9]
    Keyl M. Quantum state estimation and large deviations [J]. Reviews in Mathematical Physics, 2006, 18(1): 19–60.CrossRefGoogle Scholar
  9. [10]
    Bagan E, Ballester M A, Gill R D, et al. Optimal full estimation of qubit mixed states [J]. Physical Review A, 2006, 73(3): 032301.CrossRefGoogle Scholar
  10. [11]
    Schumacher B. Quantum coding [J]. Physical Review A, 1995, 51: 2738.CrossRefPubMedGoogle Scholar
  11. [12]
    Nielsen M A, Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge: Cambridge University Press, 2010.CrossRefGoogle Scholar
  12. [13]
    Cover T M, Thomas J A. Elements of Information Theory [M]. New York: John Wiley & Sons, 2012.Google Scholar
  13. [14]
    Csiszar I, Körner J. Information Theory: Coding Theorems for Discrete Memoryless Systems [M]. Cambridge: Cambridge University Press, 2011.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’an, ShaanxiChina

Personalised recommendations