Wuhan University Journal of Natural Sciences

, Volume 20, Issue 5, pp 381–385 | Cite as

Revisitation of the core inverse



In this paper, we revisit the core inverse introduced by Baksalary and Trenkler. We first give some new characterizations of the core inverse. Then, we give a new representation of the core inverse, which is related to A T,S (2) .


core inverse Moore-Penrose inverse group inverse generalized inverse 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baksalary O M, Trenkler G. Revisitation of the product of two orthogonal projectors [J]. Linear Algebra Appl, 2009, 430: 2813–2833.CrossRefGoogle Scholar
  2. [2]
    Hartwig R E, Spindelböck K. Matrices for which A* and A† commute [J]. Linear Multilinear Algebra, 1984, 14: 241–256.CrossRefGoogle Scholar
  3. [3]
    Mitra S K. Noncore square matrices miscellany [J]. Linear Algebra Appl, 1996, 249: 47–66.CrossRefGoogle Scholar
  4. [4]
    Baksalary O M, Trenkler G. Core inverse of matrices [J]. Linear Multilinear Algebra, 2010, 58: 681–697.CrossRefGoogle Scholar
  5. [5]
    Baksalary O M, Styan G P H, Trenkler G. On a matrix decomposition of Hartwig and Spindelböck [J]. Linear Algebra Appl, 2009, 430(10): 2798–2812.CrossRefGoogle Scholar
  6. [6]
    Wang H, Liu X. Characterizations of the core inverse and the core partial ordering [J]. Linear Multilinear Algebra, 2015, 63(9): 1829–1836.CrossRefGoogle Scholar
  7. [7]
    Luo G J, Zuo K Z, Zhou L. The new proterties of core inverse of matrices [J]. Journal of Shandong University, 2015, (4): 90–94(Ch).Google Scholar
  8. [8]
    Malik S B. Some more properties of core partial order [J]. Appl Math Comput, 2013, 221: 192–201.CrossRefGoogle Scholar
  9. [9]
    Malik S B, Rueda L, Thome N. Further properties on core partial order and other matrix partial orders [J]. Linear Multilinear Algebra, 2014, 62: 1629–1648.CrossRefGoogle Scholar
  10. [10]
    Rakić D S, Dinčić N Č, Djordjević D S. Core inverse and core partial order of Hilbert space operators [J]. Appl Math Comput, 2014, 244: 283–302.CrossRefGoogle Scholar
  11. [11]
    Rakic D S, Dincic N C, Djordjevic D S. Group, Moore-Penrose, core and dual core inverse in rings with involution[J]. Linear Algebra Appl, 2014, 463: 115–133.CrossRefGoogle Scholar
  12. [12]
    Baksalary O M, Trenkler G. On a generalized core inverse[J]. Appl Math Comput, 2014, 236: 450–457.CrossRefGoogle Scholar
  13. [13]
    Prasad K M, Mohana K S. Core-EP inverse [J]. Linear Multilinear Algebra, 2014, 62: 792–802.CrossRefGoogle Scholar
  14. [14]
    Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications [M]. New York: Wiley Press, 1974.Google Scholar
  15. [15]
    Wang G, Wei Y, Qiao S. Generalized Inverses:Theory and Computations [M]. Beijing: Science Press, 2004(Ch).Google Scholar

Copyright information

© Wuhan University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsHubei Normal UniversityHuangshi, HubeiChina

Personalised recommendations