Skip to main content
Log in

A theoretical analysis of torque and superlubric motion in bilayer graphene disks

  • Engineering Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

To identify the relation between torque and superlubric motion, we investigate the interlayer sliding behavior of two graphene disks with numerical computation methods. The potential energy, lateral force and torque between the top and bottom graphene disks, which are associated with misfit angle, translational displacement and interlayer distance, are analyzed. The results show that the rotation of the top disk is feeble for commensurate state, but it is difficult to realize superlubricity due to the lateral force fluctuating remarkably. For incommensurate state, the flake exhibits vanishing torque approaching to zero only for partial sliding directions. The superlubricity between the top and bottom disks will be eliminated due to torque-induced reorientation along other sliding directions. Whether for commensurate or incommensurate contact, the amplitudes of the lateral force (516 pN and 13 pN, respectively) are in qualitative agreement with experimental observation (typically 250 pN and 50 pN, respectively). It shows that the interlayer torque is insensitive to the top disk size with incommensurate contact. The results suggest that the superlubric motion of graphene disk can be controlled by adjusting the torque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo Y F, Guo W L, Chen C F. Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study [J]. Physical Review B, 2007, 76: 155429–155433.

    Article  Google Scholar 

  2. Kim S Y, Park H S. Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators [J]. Applied Physics Letters, 2009, 94: 101918–101920.

    Article  Google Scholar 

  3. Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films [EB/OL]. [2014-05-16]. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.086102.

  4. Hirano M, Shinjo K. Atomistic locking and friction [J]. Physical Review B, 1990, 41: 11837–11851.

    Article  CAS  Google Scholar 

  5. Hirano M, Shinjo K. Dynamics of friction: Superlubric state [J]. Surface Science, 1993, 283: 473–478.

    Article  Google Scholar 

  6. Lee H, Lee N, Seo Y, et al. Comparison of frictional forces on graphene and graphite [J]. Nanotechnology, 2009, 20: 325701–325706.

    Article  PubMed  Google Scholar 

  7. Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines [J]. Angewandte Chemie-International Edition, 2007, 46: 72–191.

    Article  CAS  Google Scholar 

  8. Fleishman D, Klafter J, Porto M, et al. Mesoscale engines by nonlinear friction [J]. Nano Letters, 2007, 7: 837–842.

    Article  CAS  PubMed  Google Scholar 

  9. Marago O M, Bonaccorso F, Saija R, et al. Brownian motion of graphene [J]. ACS Nano, 2010, 4: 7515–7523.

    Article  CAS  PubMed  Google Scholar 

  10. Lee C G, Li Q Y, Kalb W, et al. Frictional characteristics of atomically thin sheets [J]. Science, 2010, 328: 76–80.

    Article  CAS  PubMed  Google Scholar 

  11. Socoliuc A, Gnecco E, Maier S, et al. Atomic-scale control of friction by actuation of nanometer-sized contacts [J]. Science, 2006, 313: 207–210.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng J M, Guo P, Ren Z Y, et al. Conductance fluctuations as a function of sliding motion in bilayer graphene nanoribbon junction: A first-principles investigation [EB/OL]. [2014-05-16]. http://scitation.aip.org/content/aip/journal/apl/101/8/10.1063/1.4739838.

  13. Kim K S, Lee H J, Lee C, et al. Chemical vapor deposi- tion-grown graphene: The thinnest solid lubricant [J]. ACS Nano, 2011, 5: 5107–5114.

    Article  CAS  PubMed  Google Scholar 

  14. Schwarz U D, Zwörner O, Köster P, et al. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds [J]. Physical Review B, 1997, 56: 6987–6996.

    Article  CAS  Google Scholar 

  15. Liu E, Blanpain B, Celis J P, et al. Comparative study between macrotribology and nanotribology [J]. Journal of Applied Physics, 1998, 84: 4859–4865.

    Article  CAS  Google Scholar 

  16. Buzio R, Gnecco E, Boragno C, et al. Friction force microscopy investigation of nanostructured carbon films [J]. Carbon, 2002, 40: 883–890.

    Article  CAS  Google Scholar 

  17. Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of Graphite [J]. Physical Review Letter, 2004, 92: 126101–126104.

    Article  Google Scholar 

  18. Dienwiebel M, Pradeep N, Verhoeven G S, et al. Model experiments of superlubricity of graphite [J]. Surface Science, 2005, 576: 197–211.

    Article  CAS  Google Scholar 

  19. Feng X F, Kwon S K, Park J Y, et al. Superlubric sliding of graphene nanoflakes on graphene [J]. Nano, 2013, 7: 1718–1724.

    CAS  Google Scholar 

  20. Popov A M, Lebedeva I V, Knizhnik A A, et al. Commensurate- incommensurate phase transition in bilayer graphene [J]. Physical Review B, 2011, 84: 45404–45409.

    Article  Google Scholar 

  21. Popov A M, Lebedeva I V, Knizhnik A A, et al. Barriers to motion and rotation of graphene layers based on measurements of shear mode frequencies [J]. Chemical Physics Letters, 2012, 536: 82–86.

    Article  CAS  Google Scholar 

  22. Tomlinson G A. CVI. A molecular theory of friction [J]. Philosophical Magazine Series 7, 1929, 7: 905–939.

    Article  CAS  Google Scholar 

  23. Prandtl L. A conceptual model to the kinetic theory of solid bodies[J]. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1928, 8: 85–106.

    Article  Google Scholar 

  24. Enrico G, Sabine M, Ernst M. Superlubricity of dry nano-contacts [J]. Journal of Physics: Condensed Matter, 2008, 20: 354004–354008.

    Google Scholar 

  25. Matsushita K, Matsukawa H, Sasaki N. Atomic scale friction between clean graphite surfaces [J]. Solid State Communications, 2005, 136: 51–55.

    Article  CAS  Google Scholar 

  26. Filippov A E, Dienwiebel M, Frenken J W M, et al. Torque and twist against superlubricity [EB/OL]. [2014-05-16]. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.046102.

  27. de Wijn A S, Fusco C, Fasolino A. Stability of superlubric sliding on graphite [EB/OL]. [2014-05-16]. http://journals. aps.org/pre/abstract/10.1103/PhysRevE.81.046105.

  28. He G, Robbins M O. Simulations of the static friction due to adsorbed molecules [EB/OL]. [2014-05-16]. http://journals. aps.org/prb/abstract/10.1103/PhysRevB.64.035413.

  29. Daly C, Zhang J, Sokoloff J B. Dry friction due to adsorbed molecules [J]. Physical Review Letter, 2003, 90: 246101–246104.

    Article  CAS  Google Scholar 

  30. Müser M H. Structural lubricity: Role of dimension and symmetry [J]. Europhysics Letters, 2004, 66: 97–103.

    Article  Google Scholar 

  31. Wang J J, Wang F, Li J M, et al. Theoretical study of superlow friction between two single-side hydrogenated graphene sheets [J]. Tribology Letters, 2012, 48: 255–261.

    Article  CAS  Google Scholar 

  32. Wang J J, Wang F, Yuan P F, et al. First-principles study of nanoscale friction between graphenes [J]. Acta Physica Sinica, 2012, 61: 106801–106807(Ch).

    Google Scholar 

  33. Bonelli F, Manini N, Cadelano E, et al. Atomistic simulations of the sliding friction of graphene flakes [J]. The European Physical Journal B, 2009, 70: 449–459.

    Article  CAS  Google Scholar 

  34. Miura K, Sasaki N, Kamiya S. Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip [EB/OL]. [2014-05-16]. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.075420.

  35. Lebedeva I V, Knizhnik A A, Popov A M, et al. Fast diffusion of a graphene flake on a graphene layer [J]. Physical Review B, 2010, 82: 155460–155469.

    Article  Google Scholar 

  36. Saito R, Matsuo R, Kimura T, et al. Anomalous potential barrier of double-wall carbon nanotube [J]. Chemical Physics Letters, 2001, 348: 187–193.

    Article  CAS  Google Scholar 

  37. Verhoeven G S, Dienwiebel M, Frenken J W M. Model calculations of superlubricity of graphite [J]. Physical Review B, 2004, 70: 165418–165427.

    Article  Google Scholar 

  38. Wong H S, Durkan C, Chandrasekhar N. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy [J]. Nano, 2009, 3: 3455–3462.

    CAS  Google Scholar 

  39. Yeoman M L, Young D A. The anisotropic pressure dependence of conduction in well-oriented pyrolytic graphite I. Non-oscillatory effects and the role of carrier-carrier scattering [J]. Journal of physics C, 1969, 2: 1742–1750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianhua Liu.

Additional information

Foundation item: Supported by the National Basic Research Program of China (973 Program) (2013CB934200), the Key Program of the National Natural Science Foundation of China (10832005) and the National Natural Science Foundation of China (11264030)

Biography: LI Jianwen, male, Ph. D. candidate, research direction: nanosurface science and engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, N. A theoretical analysis of torque and superlubric motion in bilayer graphene disks. Wuhan Univ. J. Nat. Sci. 20, 173–179 (2015). https://doi.org/10.1007/s11859-015-1077-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-015-1077-x

Keywords

CLC number

Navigation