Skip to main content
Log in

RDDP: An efficient MDS array code on toleration triple node failures in storage system

  • Computer Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundancy and reliability. Under this criterion, an maximum distance separable(MDS) code has optimal redundancy. In this paper, we address a new class of MDS array codes for tolerating triple node failures by extending the row diagonal parity(RDP) code, named the RDDP(row double diagonal parity) code. The RDDP code takes advantages of good performances of the RDP code with balanced I/O. A specific triple-erasure decoding algorithm to reduce decoding complexity is depicted by geometric graph, and it is easily implemented by software and hardware. The theoretical analysis shows that the comprehensive properties of the RDDP code are optimal, such as encoding and decoding efficiency, update efficiency and I/O balance performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li G J. The scientific value of big data research [J]. China Computer Federation Communication, 2012, 8(9): 8–15(Ch).

    Google Scholar 

  2. MacWilliams F J, Sloane N J A. The Theory of Error Correcting Codes [M]. New York: Elsevier Science & North Holland Publishing Company, 1977: 32–34.

    Google Scholar 

  3. Wang Yijie, Sun Weidong, Zhou Song, et al. Key technologyies of distributed storage for cloud computing [J]. Journal of Software, 2012, 23(4): 962–986.

    Article  Google Scholar 

  4. Luo Xianghong, Shu Jiwu. Summary of research for erasure code in storage system [J]. Journal of Compute Research and Development, 2012, 49(1): 1–11.

    CAS  Google Scholar 

  5. Blaum M, Brady J, Bruck J, et al. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures [J]. IEEE Transactions Compute, 1995, 44(2): 192–202.

    Article  Google Scholar 

  6. Xu L, Bruck J. X-code: MDS array codes with optimal encoding [J]. IEEE Transactions on Information Theory, 1999, 45(1): 272–276.

    Article  Google Scholar 

  7. Xu L, Bohossian V, Bruck J, et al. Low density MDS codes and factors of complete graphs [J]. IEEE Trans on Information Theory, 1999, 45(6): 1817–1826.

    Article  Google Scholar 

  8. Li Mingqiang, Shu Jiwu. C-Codes: Cyclic lowest-density MDS array codes constructed using starters or RAID 6 [EB/OL]. [2011-10-11]. http://arxiv.org/abs/1104.2547.

  9. Corbett P, English B, Goel A, et al. Row diagonal parity for double disk failure [C]//Proc the Third USENIX Conference on File and Storage Technologies, Berkeley: IEEE Press, 2004: 1–14.

    Google Scholar 

  10. Wu Chentao, Wan Shenggang, He Xubin, et al. H-Code: A hybrid MDS array code to optimize partial stripe writes in RAID-6 [C]//Proc the IEEE Congress on International Parallel & Distributed Processing Symposium. Alaska: IEEE Press, 2011: 782–793.

    Google Scholar 

  11. Wu Chentao, He Xubin, Wu Guanying, et al. HDP code: a horizontal-diagonal parity code to optimize I/O load balancing in RAID-6 [C]//Proc the IEEE/IFIP 41 st International Conference on Dependable Sytem&Network (DSN), Hong Kong: IEEE Press, 2011: 209–220.

    Google Scholar 

  12. Li M, Shu J, Zheng W. GRID codes: Strip-based erasure code with high fault tolerance for storage systems [J]. ACM Transactions on Storage, 2009, 4(4): 1–22.

    Article  CAS  Google Scholar 

  13. Hafner J L. HoVer erasure codes for disk arrays [C]//Proc DSN-06: International Conference on Dependable Systems and Networks. Philadelphia: IEEE Press, 2006: 217–226.

    Google Scholar 

  14. Hafner J L. WEAVER codes: Highly fault tolerant erasure codes for storage systems [C]//Proceedings of FAST-2005: 4th Usenix Conference on File and Storage Technologies. San Francisco: IEEE Press, 2005: 211–224.

    Google Scholar 

  15. Blaum M, Bruck J, Vardy A. MDS array codes with independent parity symbols [J]. IEEE Transactions on Information Theory, 1996, 42(2): 529–542.

    Article  Google Scholar 

  16. Sheng L, Gang W, Stones D S, et al. T-code: 3 erasure longest lowest-density MDS codes [J]. IEEE Journal on Selected Areas in Communications, 2010, 28(2): 289–296.

    Article  Google Scholar 

  17. Feng G L, Deng R, Bao F, et al. New efficient MDS array codes for RAID, part I: Reed-Solomon-Like codes for tolerating three disk failures [J]. IEEE Trans Computers, 2005, 54(9): 1071–1080.

    Article  Google Scholar 

  18. Huang C, Xu L. STAR: An efficient coding scheme for correcting triple storage node failures [C]//Proc the 4th USENIX Conference on File and Storage Technologies. Berkeley: IEEE Press, 2005: 197–210.

    Google Scholar 

  19. Wan Wunan, Wu Zheng, et al. RAID-EEOD: The study of data placement based on toleration on triple failures array codes in RAID [J]. Chinese Journal of Compute, 2007, 30(10): 1–10.

    Google Scholar 

  20. Bloemer J M, Kalfane M, Karpinski R, et al. An XOR-Based Erasure-Resilient Coding Scheme [R]. Berkeley: International Computer Science Institute, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wunan Wan.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (60873216) and the Key Project of Sichuan Provincial Department of Education (12ZA223)

Biography: WAN Wunan, female, Professor, Ph.D., research direction: network storage and information security.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, W., Yang, W. & Suo, W. RDDP: An efficient MDS array code on toleration triple node failures in storage system. Wuhan Univ. J. Nat. Sci. 19, 161–168 (2014). https://doi.org/10.1007/s11859-014-0995-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0995-3

Key words

CLC number

Navigation