Skip to main content
Log in

Asymptotic behavior of solutions for the one-dimensional drift-diffusion model in the quarter plane

  • Mathematics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

In this paper, we study the classical drift-diffusion model arising from the semiconductor device simulation, which is the simplest macroscopic model describing the dynamics of the electron and the hole. We prove the global existence of strong solutions for the initial boundary value problem in the quarter plane. In particular, we show that in large time, these solutions tend to the nonlinear diffusion wave which is different from the steady state, at an algebraic time-decay rate. As far as we know, this is the first result about the nonlinear diffusion wave phenomena of the solutions for the one-dimensional drift-diffusion model in the quarter plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jüngel A. Quasi-Hydrodynamic Semiconductor Equations, Progreäss in Nonlinear Differential Equations [M]. Boston: Birkhuser, 2001.

    Google Scholar 

  2. Jerome J. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices [M]. Heidelberg: Springer-Verlag, 1996.

    Google Scholar 

  3. Markowich P A, Ringhofev C A, Schmeiser C. Semiconductor Equations [M]. New York: Springer-Verlag, 1990.

    Google Scholar 

  4. Kobayashi R, Kurokiba M, Kawashima S. Stationary solutions to the drift-diffusion model in the whole spaces [J]. Math Methods Appl Sci, 2009, 32:640–652.

    Article  Google Scholar 

  5. Mock M S. An initial value problem from semiconductor device theory [J]. SIAM J Math Anal, 1974, 5: 597–612.

    Article  Google Scholar 

  6. Mock M S. Asymptotic behavior of solutions of transport equations for semiconductor devices simulation[J]. J Math Anal Appl, 1975, 49: 215–225.

    Article  Google Scholar 

  7. Fang W, Ito K. Solutions to a nonlinear drift-diffusion model for semiconductors [J]. Electron J Differential Equations, 1999, 15: 38.

    Google Scholar 

  8. Fang W, Ito K. Global solutions of the time-dependent drift-diffusion model semiconductor equations [J]. J Differential Equations, 1995, 123: 523–566.

    Article  Google Scholar 

  9. Fang W, Ito K. Asymptotic behavior of the drift-diffusion semiconductor equations [J]. J Differential Equations, 1995, 123:567–587.

    Article  Google Scholar 

  10. Gajewski H. On the uniqueness of solutions to the drift-diffusion model of semiconductor devices [J]. Math Models Methods Appl Sci, 1994, 4: 121–133.

    Article  Google Scholar 

  11. Gajewski H, Groger K. On the basic equations for carrier transport in semiconductors [J]. J Math Anal Appl, 1986, 113: 12–35.

    Article  Google Scholar 

  12. Jüngel A. On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors [J]. Math Models Methods Appl Sci, 1994, 4: 677–703.

    Article  Google Scholar 

  13. Kurokiba M, Ogawa T. Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation [J]. J Math Anal Appl, 2008, 342: 1052–1067.

    Article  Google Scholar 

  14. Jüngel A, Peng Y J. Zero-relaxation-time limits in hydrodynamic models for plasmas revisted [J]. Z Angew Math Phys, 2000, 51: 385–396.

    Article  Google Scholar 

  15. Natalini R. The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation [J]. J Math Anal Appl, 1996, 198: 262–281.

    Article  Google Scholar 

  16. Hsiao L, Zhang K J. The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors [J]. Math Models Methods Appl Sci, 2000, 10: 1333–1361.

    Article  Google Scholar 

  17. Gasser I, Hsiao L, Li H L. Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors [J]. J Differential Equations, 2003, 192: 326–359.

    Article  Google Scholar 

  18. Huang F M, Li Y P. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum [J]. Dis Cont Dyn Sys, 2009, A24: 455–470.

    Google Scholar 

  19. Li H L, Zhang G J, Zhang M, et al. Long-time self-similar asymptotic of the macroscopic quantum models [J]. J Math Phys, 2008, 49: 073503.

    Article  Google Scholar 

  20. Marcati P, Mei M, Rubino B. Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping [J]. J Math Fluid Mech, 2005, 7: S224–S240.

    Article  Google Scholar 

  21. Nishihara K. Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping [J]. J Differential Equations, 1996, 131: 171–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhou.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11171223)

Biography: ZHOU Fang, female, Associate professor, research direction: partial differential equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F. Asymptotic behavior of solutions for the one-dimensional drift-diffusion model in the quarter plane. Wuhan Univ. J. Nat. Sci. 19, 144–148 (2014). https://doi.org/10.1007/s11859-014-0991-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0991-7

Key words

CLC number

Navigation