Skip to main content
Log in

A rhodamine-based sensor for chromogenic detection of Cu2+ and fluorescent detection of Fe3+

  • Material Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

A rhodamine-benzimidazole conjugate (RB) as a probe was investigated. UV-Vis analysis showed that a strong absorption band at 552 nm was formed with the addition of Cu2+, while other transition metal ions induced a little more absorption. The absorption value of RB solution at 552 nm has a linear correlation with Cu2+ concentration between 35–70 μmol/L; the detection limit reached 6.82×10−2 μmol/L, which is lower than the settled limitation for copper in the drinking water (∼30 μmol/L) standardized by World Health Organization (WHO). Moreover, FL analysis showed that only Fe3+ could induce large fluorescence intensity enhancement at 582 nm; other common metal ions including Cu2+ cannot induce the enhancement. There was a good linear correlation between relative fluorescence intensity and Fe3+ concentration ranging from 2 μmol/L to 20 μmol/L, and the detection limit reached 1.70×10−2 μmol/L. The results showed that RB could detect Cu2+ and Fe3+ simultaneously, with the UV-Vis and fluorescence spectroscopy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Higher generation luminescent PET (photoinduced electron transfer) sensors [J]. Chemosensors of Ion and Molecule Recognition, 1997, 492: 143–157.

    Article  Google Scholar 

  2. Thomas S W, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers [J]. Chemical Review, 2007, 107(4): 1339–1386.

    Article  CAS  Google Scholar 

  3. Han W S, Lee H Y, Jung S H, et al. Silica-based chromogenic and fluorogenic hybrid chemosensor materials [J]. Chemical Society Reviews, 2009, 38(7): 1904–1915.

    Article  CAS  PubMed  Google Scholar 

  4. Yuan M J, Li Y L, Li J B, et al. A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule [J]. Organic Letters, 2007, 9(12): 2313–2316.

    Article  CAS  PubMed  Google Scholar 

  5. Mizukami S, Nagano T, Urano Y, et al. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application [J]. Journal of the American Chemical Society, 2002, 124(15): 3920–3925.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu M, Yuan M J, Liu X F, et al. Visible near-infrared chemosensor for mercury ion [J]. Organic Letters, 2008, 10(7): 1481–1484.

    Article  CAS  PubMed  Google Scholar 

  7. He X R, Liu H B, Li Y L, et al. Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions [J]. Advanced Materials, 2005, 17(23): 2811–2815.

    Article  CAS  Google Scholar 

  8. Li J B, Zeng Y, Hu Q H, et al. A fluorescence “turn-on” chemodosimeter for Cu2+ in aqueous solution based on the ion promoted oxidation [J]. Dalton Transactions, 2012, 41(13): 3623–3626.

    Article  CAS  PubMed  Google Scholar 

  9. Li J B, Hu Q H, Zeng Y, et al. Rhodamine-based fluorescent probes for cations [J]. Progress in Chemistry, 2012, 24(05): 823–833.

    CAS  Google Scholar 

  10. Xu H X, Wang X Q, Zhang C L, et al. Coumarin-hydrazone based selective fluorescence sensor for copper(II) detection in aqueous solution [J]. Inorganic Chemistry Communications, 2013, 34: 8–11.

    Article  CAS  Google Scholar 

  11. Goswami S, Sen D, Das A K, et al. A new rhodamine-coumarin Cu2+ selective colorimetric and “off-on” fluorescence probe for effective use in chemistry and bioimaging along with its bound X-ray crystal structure [J]. Sensors and Acuators B-Chemical, 2013, 183: 518–525.

    Article  CAS  Google Scholar 

  12. Kumar V, Kumar A, Diwan U, et al. A Zn2+ responsive highly sensitive fluorescent probe and 1D coordination polymer based on a coumarin platform [J]. Dalton Transcations, 2013, 42(36): 13078–13083.

    Article  CAS  Google Scholar 

  13. Chen Y C, Zhu C C, Cen J J, et al. A reversible ratiometric sensor for intracellular imaging: Metal coordination-altered FRET in a dual fluorophore hybrid [J]. Chemical Communications, 2013, 49(69): 7632–7634.

    Article  CAS  PubMed  Google Scholar 

  14. Schmittel M, Lin H W. Quadruple-channel sensing: A molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis [J]. Angewandte Chime-international Edition, 2007, 46(6): 893–896.

    Article  CAS  Google Scholar 

  15. Singh N, Mulrooney R C, Kaur N, et al. A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes [J]. Chemical Communications, 2008, 40: 4900–4902.

    Article  PubMed  Google Scholar 

  16. Singh N, Kaur N, Choitir C N, et al. A dual detecting polymeric sensor: chromogenic naked eye detection of silver and ratiometric fluorescent detection of manganese [J]. Tetrahedron Letters, 2009, 50(29): 4201–4204.

    Article  CAS  Google Scholar 

  17. Lee D Y, Singh N, Jang D O. A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+ [J]. Tetrahedron Letters, 2010, 51(7): 1103–1106.

    Article  CAS  Google Scholar 

  18. Kaur P, Sareen D. The synthesis and development of a dual-analyte colorimetric sensor simultaneous estimation of Hg2+ and Fe3+ [J]. Dyes and Pigments, 2011, 88(3): 296–300.

    Article  CAS  Google Scholar 

  19. Dong M, Wang Y W, Peng Y. Highly selective ratiometric fluorescent sensing for Hg2+ and Au3+, respectively, in aqueous media [J]. Organic Letters, 2010, 12(22): 5310–5313.

    Article  CAS  PubMed  Google Scholar 

  20. Yu F B, Zhang W S, Li P, et al. Cu2+-selective naked-eye and fluorescent probe: Its crystal structure and application in bioimaging [J]. Analyst, 2009, 134(9): 1826–1833.

    Article  CAS  PubMed  Google Scholar 

  21. Li J B, Yu X L, Liu X W, et al. New rhodamine-based colorimetric chemosensor: Simple synthesis and rapid Cu2+ detection [J]. Sensor Letters, 2011, 9(4): 1331–1341.

    Article  CAS  Google Scholar 

  22. Huang L, Chen F J, Xi P X, et al. A turn-on fluorescent chemosensor for Cu2+ in aqueous media and its application to bioimaging [J]. Dyes and Pigments, 2011, 90(3): 265–268.

    Article  CAS  Google Scholar 

  23. Wang H H, Xue L, Fang Z J, et al. A colorimetric and fluorescent chemosensor for copper ions in aqueous media and its application in living cells [J]. New Journal of Chemistry, 2010, 34(7): 1239–1242.

    Article  CAS  Google Scholar 

  24. Wolfbeis O S. Materials for fluorescence-based optical chemical sensors [J]. Journal of Material Chemistry, 2005, 15(27–28): 2657–2669.

    Article  CAS  Google Scholar 

  25. Yuan M J, Zhou W D, Liu X F, et al. A multianalyte chemosensor on a single molecule: Promising structure for an integrated logic gate [J]. Journal of Organic Chemistry, 2008, 73(13): 5008–5014.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, You X Y, Fang Y, et al. A thiophen-thiooxorhodamine conjugate fluorescent probe for detecting mercury in aqueous media and living cells [J]. Organic & Biomolecular Chemistry, 2010, 8(21): 4819–4822.

    Article  CAS  Google Scholar 

  27. Wang B D, Hai J, Liu Z C, et al. Selective detection of iron(III) by rhodamine-modified Fe3O4 nanoparticles [J]. Angewandte Chemie-International Edition, 2010, 49(27): 4576–4579.

    Article  CAS  Google Scholar 

  28. Kim S K, Swamy K M K, Chung S Y, et al. New fluorescent and colorimetric chemosensors based on the rhodamine and boronic acid groups for the detection of Hg2+ [J]. Tetrahedron Letters, 2010, 51(25): 3286–3289.

    Article  CAS  Google Scholar 

  29. Jun M E, Ahn K H. Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative [J]. Organic Letters, 2010, 12(12): 2790–2793.

    Article  CAS  PubMed  Google Scholar 

  30. Hu Z Q, Lin C S, Wang X M, et al. Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine-phenylurea conjugate [J]. Chemical Communications, 2010, 46(21): 3765–3767.

    Article  CAS  PubMed  Google Scholar 

  31. Tang L J, Li F F, Liu M H. Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+ [J]. Spectrochimica Acta part A-molecular and Biomolecular Spectroscopy, 2011, 78(3): 1168–1172.

    Article  Google Scholar 

  32. Li J B, Hu Q H, Yu X L, et al. A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+ [J]. Journal of Fluorescence, 2011, 21(5): 2005–2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglin Yu.

Additional information

Foundation item: Supported by National Natural Science Foundation of China (20901063, 51203127), Wuhan Chenguang Scheme (Grant 201050231049) established under Wuhan Science and Technology Bureau, Outstanding youth project of Hubei Provincial Department of Education (20121509).

Biography: YU Xianglin, female, Ph.D., Associate professor, research direction: organic/inorganic compound functional materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Qu, H., Hu, Q. et al. A rhodamine-based sensor for chromogenic detection of Cu2+ and fluorescent detection of Fe3+ . Wuhan Univ. J. Nat. Sci. 19, 129–136 (2014). https://doi.org/10.1007/s11859-014-0989-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0989-1

Key words

CLC number

Navigation