Skip to main content
Log in

Synthesis of MgO-Modified mesoporous silica and its adsorption performance toward CO2

  • Material Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The mesoporous silica modified with magnesium oxide (MgO) was synthesized by one step method and impregnating method, respectively. The samples were characterized by small angle X-Ray diffraction (XRD), N2 adsorption-desorption and transmission electron microscopy (TEM), and the carbon dioxide adsorption capacity was analyzed by thermal gravimetric analysis (TGA). Compared with the original mesoporous silica (20.7 mg/g), the CO2 adsorption capacity of MgO-modified mesoporous silica processed by one step method increases to 32.9 mg/g. Although its surface area greatly decreases compared with that of the original mesoporous silica, the MgO-modified mesoporous silica prepared by impregnating reaches an adsorptive value of 31.1 mg/g because the number of basic sites increases on the surface of the mesoporous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X W, Zhou L, Fu X, et al. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4 [J]. Chem Engineering Science, 2007, 62(4): 1101–1110.

    Article  CAS  Google Scholar 

  2. Kim S N, Son W J, Choi J S, et al. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis [J]. Microporous Mesoporous Mater, 2008, 115(3): 497–503.

    Article  CAS  Google Scholar 

  3. Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem Soc, 1992, 114(27): 10834–10843.

    Article  CAS  Google Scholar 

  4. Kresge C T, Leonowicz M E, Poth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism [J]. Nature, 1992, 359(6397): 710–712.

    Article  CAS  Google Scholar 

  5. Wu Z X, Webley P A, Zhao D Y. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent [J]. Langmuir, 2010, 26(12): 10277–10286.

    Article  CAS  PubMed  Google Scholar 

  6. Canck E D, Lapeire L, Clercq J D, et al. New ultrastable mesoporous adsorbent for the removal of mercury ions [J]. Langmuir, 2010, 26(12): 10076–10083.

    Article  PubMed  Google Scholar 

  7. Zamani C, Illa X, Abdollahzadeh-Ghom S, et al. Mesoporous silica: a suitable adsorbent for amines [J]. Nanoscale Res Lett, 2009, 4(11): 1303–1308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hartono S B, Qiao S Z, Jack K, et al. Improving adsorbent properties of cage-like ordered amine functionlized mesoporous silica with very large pores for bioadsorption [J]. Langmuir, 2009, 25(11): 6413–6424.

    Article  CAS  Google Scholar 

  9. Lam K F, Yeung K L, Mckay G. Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity [J]. Environ Sci Technol, 2007, 41(9): 3329–3334.

    Article  CAS  PubMed  Google Scholar 

  10. Vinu A, Miyahara M, Mori T, et al. Carbon nanocage: A large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules [J]. J Porous Mater, 2006, 13(3–4): 379–383.

    Article  CAS  Google Scholar 

  11. Wang H, Lam F L Y, Hu X J, et al. Ordered mesoporous carbon as an efficient and reversible adsorbent for the adsorption of fullerenes [J]. Langmuir, 2006, 22(10): 4583–4588.

    Article  CAS  PubMed  Google Scholar 

  12. Newalkar B L, Choudary N V, Kumar P, et al. Exploring the potential of mesoporous silica, SBA-15, as an adsorbent for light hydrocarbon separation [J]. Chem Mater, 2002, 14(1): 304–309.

    Article  CAS  Google Scholar 

  13. Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources [J]. Chemsuschem, 2009, 2(9): 796–854.

    Article  CAS  PubMed  Google Scholar 

  14. Chang F Y, Chao K J, Cheng H H, et al. Adsorption of CO2 onto amine-grafted mesoporous silicas [J]. Separation Purif ication Technology, 2009, 70(1): 87–95.

    Article  CAS  Google Scholar 

  15. Yue M B, Sun L B, Cao Y, et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine [J]. Chem-Eur J, 2008, 14(11): 3442–3451.

    Article  CAS  PubMed  Google Scholar 

  16. Yue M B, Sun L B, Cao Y, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group [J]. Microporous Mesoporous Mater, 2008, 114(1–3): 74–81.

    Article  CAS  Google Scholar 

  17. Belmabkhout Y, Sayari A. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions [J]. Adsorption, 2009, 15(3): 318–328.

    Article  CAS  Google Scholar 

  18. Chang A C C, Chuang S S C, Gray M, et al. In-situ infrared study of CO2 adsorption on SBA-15 grafted with gamma-(aminopropyl) triethoxysilane [J]. Energ Fuel, 2003, 17(92): 468–473.

    Article  CAS  Google Scholar 

  19. Jang H T, Park Y, Ko Y S, et al. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption [J]. Int J Greenh Gas Conl, 2009, 3(5):545–549.

    Article  CAS  Google Scholar 

  20. Chandrasekar G, Son W J, Ahn W S. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption [J]. J Porous Mater, 2009, 16(5): 545–551.

    Article  CAS  Google Scholar 

  21. Brandani F, Ruthven D M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites [J]. Ind Eng Chem Res, 2004, 43(26): 8339–8344.

    Article  CAS  Google Scholar 

  22. Zhou L, Liu X W, Li J W, et al. Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2, N2, O2, CH4 and CO2 [J]. Chem Physics Letters, 2005, 413(1–3): 6–9.

    Article  CAS  Google Scholar 

  23. Chew T L, Ahmad A L, Bhatia S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2) [J]. Adv Colloid Interfac Sci, 2010, 153(1–2): 43–57.

    Article  CAS  Google Scholar 

  24. Yue M B, Chun Y, Cao Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template [J]. Adv Funct Mater, 2006, 16(13): 1717–1722.

    Article  CAS  Google Scholar 

  25. Drese J H, Choi S, Lively R P, et al. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents [J]. Adv Funct Mater, 2009, 19(23): 3821–3832.

    Article  CAS  Google Scholar 

  26. Xu X C, Song C S, Andresen J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture [J]. Energy Fuels, 2002, 16(6): 1463–1469.

    Article  CAS  Google Scholar 

  27. Cauval A, Renard G, Brunel D. Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups [J]. J Org Chem, 1997, 62(3): 749–751.

    Article  Google Scholar 

  28. Bain S W, Ma Z, Cui Z M, et al. Synthesis of micrometer-sized nanostructured magnesium oxideand its high catalytic activity in the Claisen-Schmidt condensation reaction [J]. J Phys Chem C, 2008, 112(30): 11340–11344.

    Article  CAS  Google Scholar 

  29. Choudary B M, Ranganath K V S, Pal U, et al. Nanocrystalline MgO for asymmetric Henry and Michael reactions [J]. J Am Chem Soc, 2005, 127(38): 13167–13171.

    Article  CAS  PubMed  Google Scholar 

  30. Climent M J, Corma A, Iborra S, et al. Base catalysis for fine chemicals production: Claisen-Schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest [J]. J Catal, 1995, 151(1): 60–66.

    Article  CAS  Google Scholar 

  31. Kumar A, Kumar J. Defect and adsorbate induced infrared modes in sol-gel derived magnesium oxide nano-crystallites [J]. Solid State Commun, 2008, 147(9–10): 405–408.

    Article  CAS  Google Scholar 

  32. Macquarrie D J, Jackson D B. Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica [J]. Chem Commun, 1997, 27(18): 1781–1782.

    Article  Google Scholar 

  33. Bhagiyalakshmi M, Lee J Y, Jang H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption [J]. Int J Greenhouse Gas Con, 2010, 4(1): 51–56.

    Article  CAS  Google Scholar 

  34. Roggenbuck J, Koch G, Tiemann M. Synthesis of mesoporous magnesium oxide by CMK-3 carbon structure replication [J]. Chem Mater, 2006, 18(17): 4151–4156.

    Article  CAS  Google Scholar 

  35. Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon [J]. J Am Chem Soc, 2005, 127(4): 1096–1097.

    Article  CAS  PubMed  Google Scholar 

  36. Bian S W, Baltrusaitis J, Galhotra P, et al. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption [J]. J Mater Chem, 2010, 20(39): 8705–8710.

    Article  CAS  Google Scholar 

  37. Fu X, Liu S G, Li J P, et al. CO2 adsorption over mesoporous MgO-ZrO2 nanocomposites with high stability [J]. Fine Chemicals, 2008, 25(11): 1092–1096 (Ch).

    CAS  Google Scholar 

  38. Wei Y L, Wang Y M, Zhu J H, et al. In-situ coating of SBA-15 with MgO: Direct synthesis of mesoporous solid bases from strong acidic systems [J]. Adv Mater, 2003, 15(22): 1943–1945.

    Article  CAS  Google Scholar 

  39. Wang Y M, Wu Z Y, Shi L Y, et al. Rapid functionalization of mesoporous materials: Directly dispersing metal oxides into as-prepared SBA-15 occluded with template [J]. Adv Mater, 2005, 17(3): 323–327.

    Article  CAS  Google Scholar 

  40. Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstorm pores [J]. Science, 1998, 279(5350): 548–552.

    Article  CAS  PubMed  Google Scholar 

  41. Xie Y C, Tang Y Q. Spontaneous dispersion of oxides and salts to zeolites and its applications [J]. Acta Sci Natural Universi Peki, 1998, 34(2–3): 302–308(Ch).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Liu.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (51272183), the Program for Discipline Leader in Wuhan (201051730563), and the self-determined and innovative research funds of Wuhan University

Biography: LIU Qiming, male, Professor, Ph. D., research direction: optoelectronic functional materials, glasses and amorphous materials, porous functional materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Ma, J., Zhou, Y. et al. Synthesis of MgO-Modified mesoporous silica and its adsorption performance toward CO2 . Wuhan Univ. J. Nat. Sci. 19, 111–116 (2014). https://doi.org/10.1007/s11859-014-0986-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0986-4

Key words

CLC number

Navigation