Skip to main content
Log in

Multifunctions of histone H1 proteins

  • Review
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Among various histones, histone H1 proteins have been appreciated for their multiple functions in diverse biological processes. In addition to being a structural protein in chromatin, H1 proteins also play critical roles in cell cycle, gene expression, and development. Recent studies reveal the possible effects of H1 in some diseases, such as cancer and neurodegenerative diseases. Here, we review different variants of H1, the functions, and post translational modifications of H1 variants are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watson J D. The Structure of DNA, in Cold Spring Harbor Symposia on Quantitative Biology [R]. New York: Cold Spring Harbor Laboratory Press, 1953.

    Google Scholar 

  2. Catez F, Ueda T, Bustin M. Determinants of histone H1 mobility and chromatin binding in living cells [J]. Nat Struct Mol Biol, 2006, 13: 305–310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhai Z H, Wang X Z. Cell Biology. 3rd ed [M]. Beijing: Higher Education Press, 2008(Ch).

    Google Scholar 

  4. Tanaka H, Katoh A, Oguro K, et al. Disturbance of hippocampal long-term potentiation after transient ischemia in GFAP deficient mice [J]. J Neurosci Res, 2002, 67: 11–20.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka M, Hennebold J D, Macfarlane J, et al. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog [J]. Development, 2001, 128: 655–664.

    CAS  PubMed  Google Scholar 

  6. Helliger W, Lindner H, Grubl-Knosp O, et al. Alteration in proportions of histone H1 variants during the differentiation of murine erythroleukaemic cells [J]. Biochem J, 1992, 288 (Pt 3): 747–751.

    Google Scholar 

  7. Medrzycki M, Zhang Y, Cao K, et al. Expression analysis of mammalian linker-histone subtypes [EB/OL]. [2013-02-09]. http://www.ncbi.nlm.nih.gov/pubmed/22453355?dopt=Citation.

    Google Scholar 

  8. Medrzycki M, Zhang Y, McDonald J F, et al. Profiling of linker histone variants in ovarian cancer [J]. Front Biosci, 2012, 17: 396–406.

    Article  CAS  Google Scholar 

  9. Zhang Y, Cooke M, Panjwani S, et al. Histone h1 depletion impairs embryonic stem cell differentiation [EB/OL]. [2013-05-01]. http://www.ncbi.nlm.nih.gov/pubmed/22589736?dopt=Citation.

  10. Zhang Y, Liu Z, Medrzycki M, et al. Reduction of Hox gene expression by histone H1 depletion [EB/OL]. [2013-06-12]. http://www.ncbi.nlm.nih.gov/pubmed/22701719?dopt=Citation.

    Google Scholar 

  11. Luger K, Mader A W, Richmond R K, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution [J]. Nature, 1997, 389: 251–260.

    Article  CAS  PubMed  Google Scholar 

  12. Richmond T J, Davey C A. The structure of DNA in the nucleosome core [J]. Nature, 2003, 423: 145–150.

    Article  CAS  PubMed  Google Scholar 

  13. Burlingame R W, Love W E, Wang B C, et al. Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 A [J]. Science, 1985, 228: 546–553.

    Article  CAS  PubMed  Google Scholar 

  14. Du Preez L L, Patterton H G. Secondary structures of the core histone N-terminal tails: Their role in regulating chromatin structure [J]. Subcell Biochem, 2012, 61: 37–55.

    Article  PubMed  Google Scholar 

  15. Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  16. Nightingale K P, O’Neill L P, Turner B M. Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code [J]. Curr Opin Genet Dev, 2006, 16: 125–136.

    Article  CAS  PubMed  Google Scholar 

  17. Galasinski S C, Louie D F, Gloor K K, et al. Global regulation of post-translational modifications on core histones [J]. J Biol Chem, 2002, 277: 2579–2588.

    Article  CAS  PubMed  Google Scholar 

  18. Krishnan S, Horowitz S, Trievel R C. Structure and function of histone H3 lysine 9 methyltransferases and demethylases [J]. Chembiochem, 2011, 12: 254–263.

    Article  CAS  PubMed  Google Scholar 

  19. Kamakaka R T, Biggins S. Histone variants: Deviants? [J]. Genes Dev, 2005, 19: 295–310.

    Article  CAS  PubMed  Google Scholar 

  20. Taty-Taty G C, Courilleau C, Quaranta M, et al. H2A.Z depletion impairs proliferation and viability but not DNA double-strand breaks repair in human immortalized and tumoral cell lines [EB/OL]. [2013-03-09]. https://www.landesbioscience.com/journals/cc/article/27143/.

    Google Scholar 

  21. Hu G, Cui K, Northrup D, et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation [J]. Cell Stem Cell, 2013, 12: 180–192.

    Article  PubMed  Google Scholar 

  22. Luo J, Xu X, Hall H, et al. Histone h3 exerts a key function in mitotic checkpoint control [J]. Mol Cell Biol, 2010, 30: 537–549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Harshman S W, Young N L, Parthun M R, et al. H1 histones: Current perspectives and challenges [J]. Nucleic Acids Res, 2013, 41(21): 9593–9609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Khochbin S. Histone H1 diversity: bridging regulatory signals to linker histone function [J]. Gene, 2001, 271: 1–12.

    Article  CAS  PubMed  Google Scholar 

  25. Bustin M, Catez F, Lim J H. The dynamics of histone H1 function in chromatin [J]. Mol Cell, 2005, 17: 617–620.

    Article  CAS  PubMed  Google Scholar 

  26. Sancho M, Diani E, Beato M, et al. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth [EB/OL]. [2012-11-20]. http://www.ncbi.nlm. nih.gov/pubmed/18927631?dopt=Citation.

  27. Abel T W, Clark C, Bierie B, et al. GFAP-Cre-mediated activation of oncogenic K-ras results in expansion of the subventricular zone and infiltrating glioma [J]. Mol Cancer Res, 2009, 7: 645–653.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bernal G M, Peterson D A. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells [J]. Aging Cell, 2011, 10: 466–482.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Meergans T, Albig W, Doenecke D. Varied expression patterns of human H1 histone genes in different cell lines [J]. DNA Cell Biol, 1997, 16: 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  30. Terme J M, Sese B, Millan-Arino L, et al. Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency [J]. J Biol Chem, 2011, 286: 35347–35357.

    Article  CAS  PubMed  Google Scholar 

  31. Izzo A, Kamieniarz K, Schneider R. The histone H1 family: Specific members, specific functions? [J]. Biol Chem, 2008, 389: 333–343.

    Article  CAS  PubMed  Google Scholar 

  32. McBryant S J, Lu X, Hansen J C. Multifunctionality of the linker histones: an emerging role for protein-protein interactions [J]. Cell Res, 2010, 20: 519–528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Babu M, Bai R P, Suguna L, et al. Differentiation of keloid and hypertrophic scar; Correlation of the water proton relaxation times with the duration of the scar [J]. Physiol Chem Phys Med NMR, 1993, 25: 113–120.

    CAS  PubMed  Google Scholar 

  34. Cerf C, Lippens G, Ramakrishnan V, et al. Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: Full assignment, tertiary structure, and comparison with the globular domain of histone H5 [J]. Biochemistry, 1994, 33: 11079–11086.

    Article  CAS  PubMed  Google Scholar 

  35. Clark K L, Halay E D, Lai E, et al. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5 [J]. Nature, 1993, 364: 412–420.

    Article  CAS  PubMed  Google Scholar 

  36. Kasinsky H E, Lewis J D, Dacks J B, et al. Origin of H1 linker histones [J]. FASEB J, 2001, 15: 34–42.

    Article  CAS  PubMed  Google Scholar 

  37. Hendzel M J, Lever M A, Crawford E, et al. The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo [J]. J Biol Chem, 2004, 279: 20028–20034.

    Article  CAS  PubMed  Google Scholar 

  38. Kalashnikova A A, Winkler D D, McBryant S J, et al. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus [J]. Nucleic Acids Res, 2013, 41: 4026–4035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Orrego M, Ponte I, Roque A, et al. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin [J]. BMC Biol, 2007, 5: 1–11.

    Article  Google Scholar 

  40. Th’ng J P, Sung R, Ye M, et al. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain [J]. J Biol Chem, 2005, 280: 27809–27814.

    Article  PubMed  Google Scholar 

  41. Clausell J, Happel N, Hale T K, et al. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF [EB/OL]. [2012-10-07]. http://www.ncbi.nlm.nih.gov/pubmed/19794910?dopt=Citation.

  42. Balhorn R, Chalkley R, Granner D. Lysine-rich histone phosphorylation. A positive correlation with cell replication [J]. Biochemistry, 1972, 11: 1094–1098.

    Article  CAS  PubMed  Google Scholar 

  43. Garcia B A, Busby S A, Barber C M, et al. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry [J]. J Proteome Res, 2004, 3: 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  44. Wisniewski J R, Zougman A, Kruger S, et al. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue [J]. Mol Cell Proteomics, 2007, 6: 72–87.

    Article  CAS  PubMed  Google Scholar 

  45. Ruan J, Ouyang H, Amaya M F, et al. Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a [EB/OL]. [2013-04-21].http://www.ncbi.nlm.nih.gov/pubmed/22514736?dopt=Citation.

  46. Bonet-Costa C, Vilaseca M, Diema C, et al. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1 [J]. J Proteomics, 2012, 75: 4124–4138.

    Article  CAS  PubMed  Google Scholar 

  47. Lu A, Zougman A, Pudelko M, et al. Mapping of lysine monomethylation of linker histones in human breast and its cancer [J]. J Proteome Res, 2009, 8: 4207–4215.

    Article  CAS  PubMed  Google Scholar 

  48. Bruce A, Alexander J, Julian L, et al. Molecular Biology of THE CELL [M]. New York: Garland Science Press, 2007: 1392.

    Google Scholar 

  49. Ruiz-Carrillo A, Puigdomenech P, Eder G, et al. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure [J]. Biochemistry, 1980, 19: 2544–2554.

    Article  CAS  PubMed  Google Scholar 

  50. Hansen J C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions [J]. Annu Rev Biophys Biomol Struct, 2002, 31: 361–392.

    Article  CAS  PubMed  Google Scholar 

  51. Shen X, Yu L, Weir J W, et al. Linker histones are not essential and affect chromatin condensation in vivo [J]. Cell, 1995, 82: 47–56.

    Article  CAS  PubMed  Google Scholar 

  52. Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin [J]. J Cell Biol, 1979, 83: 403–427.

    Article  CAS  PubMed  Google Scholar 

  53. Simpson R T. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones [J]. Biochemistry, 1978, 17: 5524–5531.

    Article  CAS  PubMed  Google Scholar 

  54. Renz M, Nehls P, Hozier J. Involvement of histone H1 in the organization of the chromosome fiber [J]. Proc Natl Acad Sci U S A, 1977, 74: 1879–1883.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Green G R, Lee H J, Poccia D L. Phosphorylation weakens DNA binding by peptides containing multiple “SPKK” sequences [J]. J Biol Chem, 1993, 268: 11247–11255.

    CAS  PubMed  Google Scholar 

  56. Kassner I, Barandun M, Fey M, et al. Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4 [J]. Epigenetics Chromatin, 2013, 6: 1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kowalski A, Palyga J. Linker histone subtypes and their allelic variants [J]. Cell Biol Int, 2012, 36: 981–996.

    Article  CAS  PubMed  Google Scholar 

  58. Brown D T, Alexander B T, Sittman D B. Differential effect of H1 variant overexpression on cell cycle progression and gene expression [J]. Nucleic Acids Res, 1996, 24: 486–493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Croston G E, Kerrigan L A, Lira L M, et al. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription [J]. Science, 1991, 251: 643–649.

    Article  CAS  PubMed  Google Scholar 

  60. Laybourn P J, Kadonaga J T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II [J]. Science, 1991, 254: 238–245.

    Article  CAS  PubMed  Google Scholar 

  61. Gao B, Jaffe H, Kunos G. Histone H1 isoforms purified from rat liver bind nonspecifically to the nuclear factor 1 recognition sequence and serve as generalized transcriptional repressors [J]. Mol Cell Biochem, 1998, 178: 187–196.

    Article  CAS  PubMed  Google Scholar 

  62. Abdelfadil E, Cheng Y H, Bau D T, et al. Thymoquinone induces apoptosis in oral cancer cells through p38beta inhibition [J]. Am J Chin Med, 2013, 41: 683–696.

    Article  CAS  PubMed  Google Scholar 

  63. Anh T D, Ahn M Y, Kim S A, et al. The histone deacetylase inhibitor, Trichostatin A, induces G2/M phase arrest and apoptosis in YD-10B oral squamous carcinoma cells [J]. Oncol Rep, 2012, 27: 455–460.

    CAS  PubMed  Google Scholar 

  64. Messing A, Li R, Naidu S, et al. Error in Figure in: Archetypal and New Families With lexander Disease and Novel Mutations in GFAP [J]. Arch Neurol, 2012, 69: 208–214.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hellauer K, Sirard E, Turcotte B. Decreased expression of specific genes in yeast cells lacking histone H1 [J]. J Biol Chem, 2001, 276: 13587–13592.

    CAS  PubMed  Google Scholar 

  66. Karrer K M, Peiffer S L, DiTomas M E. Two distinct gene subfamilies within the family of cysteine protease genes [J]. Proc Natl Acad Sci U S A, 1993, 90: 3063–3067.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Shen X, Gorovsky M A. Linker histone H1 regulates specific gene expression but not global transcription in vivo [J]. Cell, 1996, 86: 475–483.

    Article  CAS  PubMed  Google Scholar 

  68. Mori N, Matsuda T, Tadano M, et al. Apoptosis induced by the histone deacetylase inhibitor FR901228 in human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. [J]. J Virol, 2011, 85: 1414–1415.

    Article  Google Scholar 

  69. Kamieniarz K, Izzo A, Dundr M, et al. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation [J]. Genes Dev, 2012, 26: 797–802.

    Article  CAS  PubMed  Google Scholar 

  70. Herrera R E, Chen F, Weinberg R A. Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts [J]. Proc Natl Acad Sci U S A, 1996, 93: 11510–11515.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Bradbury E M. Reversible histone modifications and the chromosome cell cycle [J]. Bioessays, 1992, 14: 9–16.

    Article  CAS  PubMed  Google Scholar 

  72. Hohmann P, Tobey R A, Gurley L R. Phosphorylation of distinct regions of f1 histone. Relationship to the cell cycle [J]. J Biol Chem, 1976, 251: 3685–3692.

    CAS  PubMed  Google Scholar 

  73. Chu C S, Hsu P H, Lo P W, et al. Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome [J]. J Biol Chem, 2011, 286: 35843–35851.

    Article  CAS  PubMed  Google Scholar 

  74. Woodcock C L, Skoultchi A I, Fan Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length [J]. Chromosome Res, 2006, 14: 17–25.

    Article  CAS  PubMed  Google Scholar 

  75. Dworkin-Rastl E, Kandolf H, Smith R C. The maternal histone H1 variant, H1M (B4 protein), is the predominant H1 histone in Xenopus pregastrula embryos [J]. Dev Biol, 1994, 161: 425–439.

    Article  CAS  PubMed  Google Scholar 

  76. Fan Y, Sirotkin A, Russell R G, et al. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype [J]. Mol Cell Biol, 2001, 21: 7933–7943.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Fan Y, Nikitina T, Morin-Kensicki E M, et al. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo [J]. Mol Cell Biol, 2003, 23: 4559–4572.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Konishi A, Shimizu S, Hirota J, et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks [J]. Cell, 2003, 114: 673–688.

    Article  CAS  PubMed  Google Scholar 

  79. Awasthi S, Singhal S S, Singhal J, et al. Role of RLIP76 in lung cancer doxorubicin resistance: III. Anti-RLIP76 antibodies trigger apoptosis in lung cancer cells and synergistically increase doxorubicin cytotoxicity [J]. Int J Oncol, 2003, 22: 721–732.

    CAS  PubMed  Google Scholar 

  80. Vadlamudi R K, Wang R A, Mazumdar A, et al. Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha [J]. J Biol Chem, 2001, 276: 38272–38279.

    CAS  PubMed  Google Scholar 

  81. Nair S S, Mishra S K, Yang Z, et al. Potential role of a novel transcriptional coactivator PELP1 in histone H1 displacement in cancer cells [J]. Cancer Res, 2004, 64: 6416–6423.

    Article  CAS  PubMed  Google Scholar 

  82. Jani A B, Hellman S. Early prostate cancer: Elinical decision-making [J]. Lancet, 2003, 361: 1045–1053.

    Article  PubMed  Google Scholar 

  83. Merglen A, Schmidlin F, Fioretta G, et al. Short- and long-term mortality with localized prostate cancer [J]. Arch Intern Med, 2007, 167: 1944–1950.

    Article  PubMed  Google Scholar 

  84. Dotiwala F, Eapen V V, Harrison J C, et al. DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase [J]. Proc Natl Acad Sci U S A, 2013, 110: 41–49.

    Article  Google Scholar 

  85. Makin O S, Serpell L C. Structures for amyloid fibrils [J]. FEBS J, 2005, 272: 5950–5961.

    Article  CAS  PubMed  Google Scholar 

  86. Westermark P, Benson M D, Buxbaum J N, et al. Amyloid: Toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis [J]. Amyloid, 2005, 12: 1–4.

    Article  CAS  PubMed  Google Scholar 

  87. Gordon D J, Meredith S C. Probing the role of backbone hydrogen bonding in beta-amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions [J]. Biochemistry, 2003, 42: 475–485.

    Article  CAS  PubMed  Google Scholar 

  88. Duce J A, Smith D P, Blake R E, et al. Linker histone H1 binds to disease associated amyloid-like fibrils [J]. J Mol Biol, 2006, 361: 493–505.

    Article  CAS  PubMed  Google Scholar 

  89. Yamada M, Sato T, Tsuji S, et al. CAG repeat disorder models and human neuropathology: similarities and differences [J]. Acta Neuropathol, 2008, 115: 71–86.

    Article  CAS  PubMed  Google Scholar 

  90. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond [J]. Lancet Neurol, 2010, 9: 885–894.

    Article  CAS  PubMed  Google Scholar 

  91. Cummings C J, Zoghbi H Y. Trinucleotide repeats: Mechanisms and pathophysiology [J]. Annu Rev Genomics Hum Genet, 2000, 1: 281–328.

    Article  CAS  PubMed  Google Scholar 

  92. Kizilyaprak C, Spehner D, Devys D, et al. The linker histone H1C contributes to the SCA7 nuclear phenotype [J]. Nucleus, 2011, 2: 444–454.

    Article  PubMed  Google Scholar 

  93. Misteli T, Gunjan A, Hock R, et al. Dynamic binding of histone H1 to chromatin in living cells [J]. Nature, 2000, 408: 877–881.

    Article  CAS  PubMed  Google Scholar 

  94. Lever M A, Th’ng J P, Sun X, et al. Rapid exchange of histone H1.1 on chromatin in living human cells [J]. Nature, 2000, 408: 873–876.

    Article  CAS  PubMed  Google Scholar 

  95. Arar N H, Freedman B I, Adler S G, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study [J]. Invest Ophthalmol Vis Sci, 2008, 49: 3839–3845.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zheng.

Additional information

Foundation item: Supported by the National Basic Research Program of China (2012CB524901), the Natural Science Foundation of China (31271370, 81100687), and the Program for New Century Excellent Talents in University (NECT10-0623)

Biography: WANG Wenjun, female, Ph.D. candidate, research direction: diabetes and its complications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Cai, R., Xiao, H. et al. Multifunctions of histone H1 proteins. Wuhan Univ. J. Nat. Sci. 19, 8–18 (2014). https://doi.org/10.1007/s11859-014-0972-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-014-0972-x

Key words

CLC number

Navigation