Wuhan University Journal of Natural Sciences

, Volume 18, Issue 6, pp 477–483 | Cite as

Matroidal error correction networks and linear network error correction MDS codes

Article

Abstract

In this paper, we further study the connections between linear network error correction codes and representable matroids. We extend the concept of matroidal network introduced by Dougherty et al. to a generalized case when errors occur in multiple channels. Importantly, we show the necessary and sufficient conditions on the existence of linear network error correction multicast/ broadcast/dispersion maximum distance separable (MDS) code on a matroidal error correction network.

Key words

network error correction code error pattern imaginary error channels extended network matroid 

CLC number

TN 915.01 TN 919.3+1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cai N, Yeung R W. Network coding and error correction [C] //Proc IEEE Information Theory Workshop. Bangalore: IEEE Press, 2002: 119–122.Google Scholar
  2. [2]
    Yeung R W, Cai N. Network error correction, part I: Basic concepts and upper bounds [J]. Communications in Infomation and Systems, 2006, 6: 19–36.CrossRefGoogle Scholar
  3. [3]
    Cai N, Yeung R W. Network error correction, part II: Lower bounds [J]. Communications in Infomation and Systems, 2006, 6: 37–54.CrossRefGoogle Scholar
  4. [4]
    Zhang Z. Linear network error correction codes in packet networks [J]. IEEE TransInf Theory, 2008, 54(1): 209–218.CrossRefGoogle Scholar
  5. [5]
    Matsumoto R. Construction algorithm for network error -correcting codes attaining the singleton bound [J]. IEICE Trans Fund, E90-A, 2007, 9: 1729–1735.CrossRefGoogle Scholar
  6. [6]
    Yang S, Yeung R W, Ngai C K. Refined coding bounds and code constructions for coherent network error correction [J]. IEEE Trans Inf Theory, 2011, 57(3): 1409–1424.CrossRefGoogle Scholar
  7. [7]
    Guang X, Fu F W, Zhang Z. Construction of network error correction codes in packet networks [J]. IEEE Trans Inf Theory, 2013, 59(2): 1030–1047.CrossRefGoogle Scholar
  8. [8]
    Guang X, Fu F W. Linear network error correction multicast/ broadcast/dispersion codes [EB/OL]. [2013-02-18]. http://arXiv: 1302.4146.
  9. [9]
    Dougherty R, Freiling C, Zeger K. Networks, matroids, and non-shannon information inequalities [J]. IEEE Trans Inf Theory, 2007, 53(6): 1949–1969.CrossRefGoogle Scholar
  10. [10]
    Dougherty R, Freiling C, Zeger K. Insufficiency of linear coding in networks information flow [J]. IEEE Trans Inf Theory, 2005, 51(8): 2745–2759.CrossRefGoogle Scholar
  11. [11]
    Kim A, Medard M. Scalar-linear solvability of matroidal networks Associated with representable matroids [C]//International Symposium on Turbo Codes and Iterative Information Processing. Brest: IEEE Press, 2010: 452–456.CrossRefGoogle Scholar
  12. [12]
    Oxley J G. Matroid Theory [M]. New York: Oxford University Press, 1992.Google Scholar
  13. [13]
    Koetter R, Medard M. An algebraic approach to network coding [J]. IEEE/ACM Transon Networking, 2003, 11: 782–795.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anShaanxi, China
  2. 2.College of ScienceEngineering University of the Chinese People’s Armed Police ForceXi’anShaanxi, China
  3. 3.School of Mathematics and Computer EngineeringXi’an University of Arts and ScienceXi’anShaanxi, China

Personalised recommendations