Skip to main content
Log in

Near-infrared absorption imaging and processing technologies based on gold nanorods

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determination method to measure the LSPR absorption intensity of gold nanorods (GNRs). A near-infrared (NIR) imaging system is established, and an NIR absorption image of the multiple samples of the colloidal GNRs is captured. Then, the LSPR absorption intensities of these samples are obtained by calculating the average grayscale of the target areas based on the NIR image processing technology. By using this method, the LSPR absorption intensities of the multiple samples are determined all at once, and their accuracy is as high as that obtained by using spectrophotometry. These results suggest that this method is an efficient multi-channel determination technique with high-throughput sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors [J]. Nature Materials, 2008, 7: 442–453.

    Article  PubMed  CAS  Google Scholar 

  2. Haes A J, Van Duyne R P. A unified view of propagating and localized surface plasmon resonance biosensors [J]. Analytical and Bioanalytical Chemistry, 2004, 379: 920–930.

    Article  PubMed  CAS  Google Scholar 

  3. Medley C D, Smith J E, Tang Z W, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells [J]. Analytical Chemistry, 2008, 80(4): 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  4. Liu J M, Wang H F, Yan X P. A gold nanorod based colorimetric probe for the rapid and selective detection of Cu2+ ions [J]. Analyst, 2011, 136: 3904–3910.

    Article  PubMed  CAS  Google Scholar 

  5. Mayer K M, Hafner J H. Localized surface plasmon resonance sensors [J]. Chemical Reviews, 2011, 111(6): 3828–3857.

    Article  PubMed  CAS  Google Scholar 

  6. Wang C G, Chen Y, Wang T T, et al. Biorecognition-driven self-assembly of gold nanorods: a rapid and sensitive approach toward antibody sensing [J]. Chemistry of Materials, 2007, 19(24): 5809–5811.

    Article  CAS  Google Scholar 

  7. Wang C G, Ma Z F, Wang T T, et al. Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing [J]. Advanced Functional Materials, 2006, 16: 1673–1678.

    Article  CAS  Google Scholar 

  8. Huang H W, Liu X Y, Hu T, et al. Ultra-sensitive detection of cysteine by gold nanorod assembly [J]. Biosensors and Bioelectronics, 2010, 25(9): 2078–2083.

    Article  PubMed  CAS  Google Scholar 

  9. Aslan K, Geddes C D. Wavelength-ratiometric plasmon light scattering-based immunoassays [J]. Plasmonics, 2009, 4: 267–272.

    Article  CAS  Google Scholar 

  10. Wang G Q, Chen Z P, Wang W H, et al. Chemical redox-regulated mesoporous silica-coated gold nanorods for colorimetric probing of Hg2+ and S2-[J]. Analyst, 2011, 136: 174–178.

    Article  PubMed  CAS  Google Scholar 

  11. Huang H W, Qu C T, Liu X Y, et al. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury [J]. Chemical Communications, 2011, 47: 6897–6899.

    Article  PubMed  CAS  Google Scholar 

  12. Clarke F. Extracting process-related information from pharmaceutical dosage forms using near infrared microscopy [J]. Vibrational Spectrocopy, 2004, 34(1): 25–35.

    Article  CAS  Google Scholar 

  13. Cruz J, Bautista M, Amigo J M, et al. Nir-chemical imaging study of acetylsalicylic acid in commercial tablets [J]. Talanta, 2009, 80(2): 473–478.

    Article  PubMed  CAS  Google Scholar 

  14. Tsuta M, Sugiyama J, Sagara Y. Near-infrared imaging spectroscopy based on sugar absorption band for melons [J]. Journal of Agricultural and Food Chemistry, 2002, 50: 48–52.

    Article  PubMed  CAS  Google Scholar 

  15. Li J B, Rao X Q, Ying Y B. Detection of common defects on oranges using hyperspectral reflectance imaging [J]. Computers and Electronics in Agriculture, 2011, 78: 38–48.

    Article  Google Scholar 

  16. Brooksby B A, Dehghani H, Pogue B W, et al. Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities [J]. IEEE Journal of Selected Topics in Quantum Electronic, 2003, 9(2): 199–209.

    Article  CAS  Google Scholar 

  17. Ni W H, Kou X S, Yang Z, et al. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods [J]. Acs Nano, 2008, 2(4): 677–686.

    Article  PubMed  CAS  Google Scholar 

  18. Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution [J]. Langmuir, 2004, 20(15): 6414–6420.

    Article  PubMed  CAS  Google Scholar 

  19. Shen Y F, Krusienski D, Li J, et al. A hierarchical horizon detection algorithm [J]. Geoscience and Remote Sensing Letters, 2013, 10(1): 111–114.

    Article  Google Scholar 

  20. Wang B, Fan S S. An improved Canny edge detection algorithm [EB/OL]. [2013-03-02]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5403419&tag=1.

  21. Zhang Y, Li T, Li Q L. Defect detection for tire laser shearography image using curvelet transform based edge detector [J]. Optics & Laser Technology, 2013, 47: 64–71.

    Article  Google Scholar 

  22. Brethorst A Z, Desai N, Enright D P, et al. Performance evaluation of Canny edge detection on a tiled multicore architecture [EB/OL]. [2013-03-05]. http://ebooks.spiedigi-tallibrary.org/data/Conferences/SPIEP/2643/78720F_1.pdf.

  23. Maini R, Aggarwal H. Study and comparison of various image edge detection techniques [J]. International Journal of Image Processing (IJIP), 2009, 3(1): 1–11.

    Google Scholar 

  24. Bai X Z. Morphological image fusion using the extracted image regions and details based on multi-scale top-hat transform and toggle contrast operator [J]. Digital Signal Processing, 2013, 23(2): 542–554.

    Article  Google Scholar 

  25. Duda R O, Hart P E. Use of the Hough transformation to detect lines and curves in pictures [J]. Communications of the ACM, 1972, 15(1): 11–15.

    Article  Google Scholar 

  26. Jošth R, Dubská MarkMta, Herout A, et al. Real-time line detection using accelerated high-resolution Hough transform [J]. Image Analysis, 2011, 6688: 784–793.

    Article  Google Scholar 

  27. Ball G R, Kasiviswanathan H, Srihari S N, et al. Analysis of line structure in handwritten documents using the Hough transform [EB/OL]. [2013-03-05]. http://ebooks.spiedigital-library.org/data/Conferences/SPIEP/10562/75340Z_1.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yu.

Additional information

Foundation item: Supported by the Natural Science Foundation of Jiangsu Province (SBK201240182).

Biography: LI Qian, female, Master candidate, research direction: detection of biological signal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Huang, H., Li, Z. et al. Near-infrared absorption imaging and processing technologies based on gold nanorods. Wuhan Univ. J. Nat. Sci. 18, 307–312 (2013). https://doi.org/10.1007/s11859-013-0933-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-013-0933-9

Key words

CLC number

Navigation