Skip to main content
Log in

Upconversion luminescence properties of Mn2+-doped NaYF4:Yb/Er nanoparticles

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

NaYF4:Yb/Er upconversion nanoparticles doped with Mn2+ were synthesized by hydrothermal method. The upconversion photoluminescence measured by 975 nm continuous wave laser indicates that the as-synthesized samples generated green and red color emission with various intensity ratio ranging from 3.25 to 548.35, which is highly correlative to the dopant concentration of Mn2+. However, there is no red emission enhancement observed in Cu2+-doped NaYF4:Yb/Er nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou Jing, Liu Zhuang, Li Fuyou. Upconversion nanophosphors for small-animal imaging [J]. Chem Soc Rev, 2012, 41: 1323–1349.

    Article  Google Scholar 

  2. Wang Feng, Liu Xiaogang. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev, 2009, 38: 976–989.

    Article  Google Scholar 

  3. Zhou Jing, Zhu Xingjun, Chen Min, et al. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging [J]. Biomaterials. 2012, 33(26): 6201–6210.

    Article  Google Scholar 

  4. Zeng Songjun, Tsanga M K, Chan C F, et al. PEG modified BaGdF5: Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging [J]. Biomaterials, 2012, 33(36): 9232–9238.

    Article  Google Scholar 

  5. Liu Kai, Liu Xiaomin, Zeng Qinghui, et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells [J]. ACS Nano, 2012, 6(5): 4054–4062.

    Article  Google Scholar 

  6. Zhao Jiangbo, Lu Zhenda, Yin Yadong, et al. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size [J]. Nanoscale, 2013, 5: 944–952.

    Article  Google Scholar 

  7. Xie Xiaoji, Liu Xiaogang. Upconversion goes broadband [J]. Nat Mater, 2012, 11: 842–843.

    Article  MathSciNet  Google Scholar 

  8. Huang Xiaoyong, Han Sanyang, Huang Wei, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J]. Chem Soc Rev, 2013, 42: 173–201.

    Article  Google Scholar 

  9. Buijs M, Meyerink A, Blasse G. Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3 [J]. Luminescence, 1987, 37: 9–20.

    Article  Google Scholar 

  10. Meiser F, Cortez C, Caruso F. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles [J]. Angew Chem Int Ed, 2004, 43(44): 5954–5957.

    Article  Google Scholar 

  11. Rahman P, Green M. The synthesis of rare earth fluoride based nanoparticles [J]. Nanoscale, 2009, 1: 214–224.

    Article  Google Scholar 

  12. Zelmon D E, Northridge J M, Lee J J, et al. Optical properties of Nd-doped rare-earth vanadates [J]. Appl Opt, 2010, 49(26):4973–4978.

    Article  Google Scholar 

  13. Heer S, Kömpe K, Güdel H U, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals [J]. Adv Mater, 2004, 16(23–24): 2102–2105.

    Article  Google Scholar 

  14. Boyer B J, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J Am Chem Soc, 2006, 128(23): 7444–7445.

    Article  Google Scholar 

  15. Mai Haoxin, Zhang Yawen, Si Rui, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties [J]. J Am Chem Soc, 2006, 128(19): 6426–6436.

    Article  Google Scholar 

  16. Yu Xuefeng, Li Min, Xie Mengyin, et al. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging [J]. Nano Res, 2010, 3: 51–60.

    Article  Google Scholar 

  17. Wang Feng, Han Yu, Lim C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463: 1061–1065.

    Article  Google Scholar 

  18. Tian Gan, Gu Zhanjun, Zhou Liangjun, et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivoimaging and drug delivery [J]. Adv Mater, 2012, 24: 1226–1231.

    Article  Google Scholar 

  19. Tian Gan, Ren Wenlu, Yan Liang, et al. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation[EB/OL]. [2012-12-30]. http://onlinelibrary.wiley.com/doi/10.1002/smll.201201437/full.

  20. Wang Leyu, Li Yadong. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals [J]. Chem Mater, 2007, 19: 727–734.

    Article  Google Scholar 

  21. Zhang Yan, Lin Jingdong, Vijayaragavan V, et al. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging [J]. Chem Commun, 2012, 48: 10322–10324.

    Article  Google Scholar 

  22. Peng Xiaoniu, Li Jianbo, Yang Yuezhou, et al. Tunable nonlinear optical absorption in semiconductor nanocrystals doped with transition metal ions [J]. J Appl Phys, 2012, 112(7): 74305–74306.

    Article  Google Scholar 

  23. Pradhan N, Goorskey D, Thessing J, et al. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals [J]. J Am Chem Soc, 2005, 127(50): 17586–17587.

    Article  Google Scholar 

  24. Srivastava B B, Jana S, Pradhan N, et al. Doping Cu in semiconductor nanocrystals: Some old and some new physical insights [J]. J Am Chem Soc, 2011, 133(4): 1007–1015.

    Article  Google Scholar 

  25. Sarkar S, Karan N S, Pradhan N, et al. Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters [J]. Angewandte Chemie, 2011, 50(27): 6065–6069.

    Article  Google Scholar 

  26. Jana S, Srivastava B B, Acharya S, et al. Prevention of photooxidation in blue-green emitting Cu doped ZnSe nanocrystals [J]. Chem Commun, 2010, 46: 2853–2855.

    Article  Google Scholar 

  27. Karan N S, Sarma D D, Kadam R M, et al. Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals [J]. J Phys Chem Lett, 2010, 1(19): 2863–2866.

    Article  Google Scholar 

  28. Grandhi G K, Viswanatha R. Tunable infrared phosphors using Cu doping in semiconductor nanocrystals: Surface electronic structure evaluation [J]. J Phys Chem Lett, 2013, 4(3): 409–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ququan Wang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11174229), the National Key Basic Research Program (973 Program) (2011CB922201) and the Natural Science Foundation of Jiangsu Province (SBK 201240182)

Biography: LI Haiyang, female, Master candidate, research direction: rare earth materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, J., Nan, F. et al. Upconversion luminescence properties of Mn2+-doped NaYF4:Yb/Er nanoparticles. Wuhan Univ. J. Nat. Sci. 18, 207–212 (2013). https://doi.org/10.1007/s11859-013-0916-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-013-0916-x

Key words

CLC number

Navigation