Skip to main content
Log in

Microwave synthesis of Cu-doped ternary ZnCdS quantum dots with composition-controllable photoluminescence

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Bright Cu-doped ternary ZnCdS quantum dots (ZnCdS: Cu QDs) with varied Cd concentrations were synthesized in aqueous solution by using a convenient microwave method. These ternary QDs could be directly dispersed in water solution. By regulating the Cd2+ concentration from 0 to 50% (mole fraction of the cations), the photoluminescence excitation (PLE) peak of such ZnCdS:Cu QDs could be continuously redshifted from 320 nm to 380 nm, while their photoluminescence (PL) peak was redshifted from 490 nm to 580 nm, exhibiting multicolor Cu-related emissions. Furthermore, the quantum yield of the ZnCdS:Cu QDs could reach as high as 12% by regulating the Cu doping concentration. These ZnCdS:Cu ternary QDs with kind surface conditions and good composition-controllable optical properties may have potential application in many areas such as sensing, bioimaging, and light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood V, Halpert J E, Panzer M J, et al. Alternating current driven electroluminescence from ZnSe/ZnS: Mn/ZnS nanocrystals [J]. Nano Letters, 2009, 9(6): 2367–2371.

    Article  Google Scholar 

  2. Stouwdam J W, Janssen R A J. Electroluminescent Cu-doped CdS quantum dots [J]. Advanced Materials, 2009, 21(28): 2916–2920.

    Article  Google Scholar 

  3. Schlamp M C, Peng Xiaogang, Alivisatos A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer[ J]. J Appl Phys, 1997, 82: 5837–5842.

    Article  Google Scholar 

  4. Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002, 298(5599): 1759.

    Article  Google Scholar 

  5. Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Materials, 2005, 4(6): 435–446.

    Article  Google Scholar 

  6. Parak W J, Pellegrino T, Plank C. Labelling of cells with quantum dots [J]. Nanotechnology, 2005, 16: R9–R25.

    Article  Google Scholar 

  7. Yu Xuefeng, Li Kaiyang, Xiao Si, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo [J]. Journal of Biomedical Optics, 2007, 12(1): 014008.

    Article  Google Scholar 

  8. Aroutiounian V, Petrosyan S, Khachatryan A, et al. Quantum dot solar cells [J]. Journal of Applied Physics, 2001, 89:2268.

    Article  Google Scholar 

  9. Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells: Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. Journal of the American Chemical Society, 2006, 128(7): 2385–2393.

    Article  Google Scholar 

  10. Mueller A H, Petruska M A, Achermann M, et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers [J]. Nano Letters, 2005, 5(6): 1039–1044.

    Article  Google Scholar 

  11. Nizamoglu S, Ozel T, Sari E, et al. White light generation using CdSe/ZnS core-shell nanocrystals hybridized with In-GaN/GaN light emitting diodes [J]. Nanotechnology, 2007, 18: 065709.

    Article  Google Scholar 

  12. Medintz I, Konnert J H, Clapp A R. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9612–9617.

    Article  Google Scholar 

  13. Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5385): 2016–2018.

    Article  Google Scholar 

  14. Wu Xingyong, Liu Hongjian, Liu Jianquan, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nature Biotechnology, 2002, 21: 41–46.

    Article  Google Scholar 

  15. Mandal P, Talwar S, Major S. Orange-red luminescence from Cu doped CdS nanophosphor prepared using mixed Langmuir-Blodgett multilayers [J]. The Journal of Chemical Physics, 2008, 128: 114703.

    Article  Google Scholar 

  16. Chen Zhenqian, Lian Chao, Zhou Dong, et al. Greatly enhanced and controlled manganese photoluminescence in water-soluble ZnCdS: Mn/ZnS core/shell quantum dots [J]. Chemical Physics Letters, 2010, 488(1–3): 73–76.

    Article  Google Scholar 

  17. Yu Xuefeng, Peng Xiaoniu, Chen Zhenqian, et al. High temperature sensitivity of manganese-assisted excitonic photoluminescence from inverted core/shell ZnSe:Mn/CdSe nanocrystals [J]. Applied Physics Letters, 2010, 96: 123104.

    Article  Google Scholar 

  18. Zheng Y, Yang Z, Ying J Y, et al. Aqueous synthesis of glutathione-capped ZnSe and Zn1−x CdxSe alloyed quantum dots [J]. Advanced Materials, 2007, 19(11): 1475–1479.

    Article  Google Scholar 

  19. Zhong X H, Feng Y Y, Knoll W, et al. Alloyed ZnxCd1−x S nanocrystals with highly narrow luminescence spectral width [J]. Journal of the American Chemical Society, 2003, 125(44): 13559–13563.

    Article  Google Scholar 

  20. Sakly A, Safta N, Mejri H, et al. The electronic band parameters calculated by the Kronig-Penney method for Cd1-x ZnxS quantum dot superlattices [J]. Journal of Alloys and Compounds, 2009, 476(1–2): 648–652.

    Article  Google Scholar 

  21. Bailey R E, Nie S. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size [J]. Journal of the American Chemical Society, 2003, 125(23): 7100–7106.

    Article  Google Scholar 

  22. Ali M, Chattopadhyay S, Nag A, et al. White-light emission from a blend of CdSeS nanocrystals of different Se: S ratio [J]. Nanotechnology, 2007, 18: 075401.

    Article  Google Scholar 

  23. Chen Zhen, Chen Hu, Meng Huan, et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots [J]. Toxicology and Applied Pharmacology, 2008, 230(3): 364–371.

    Article  Google Scholar 

  24. Zhong Xinhua, Han Mingyong, Dong Zhili, et al. Composition-Tunable ZnxCd1−x Se nanocrystals with high luminescence and stability [J]. Journal of the American Chemical Society, 2003, 125(28): 8589–8594.

    Article  Google Scholar 

  25. Ali Azam K, Manisha K, Lalita J, et al. Green luminescence from copper doped zinc sulphide quantum particles [J]. Applied Physics Letters, 2009, 67(18): 2702–2704.

    Google Scholar 

  26. Norris D J, Efros A L, Erwin S C. Doped nanocrystals [J]. Science, 2008, 319(5871): 1776–1779.

    Article  Google Scholar 

  27. Zheng Jinju, Zheng Zhuhong, Gong Weiwei, et al. Stable, small, and water-soluble Cu-doped ZnS quantum dots prepared via femtosecond laser ablation [J]. Chemical Physics Letters, 2008, 465(4–6): 275–278.

    Article  Google Scholar 

  28. Bowers R, Melamed N. Luminescent centers in ZnS: Cu: Cl phosphors [J]. Physical Review, 1955, 99(6): 1781–1787.

    Article  Google Scholar 

  29. Jayanthi K, Chawla S, Chander H, et al. Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect [J]. Crystal Research and Technology, 2007, 42(10): 976–982.

    Article  Google Scholar 

  30. Huang Jinman, Yang Yi, Xue Shanhua, et al. Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks [J]. Applied Physics Letters, 1997, 70: 2335–2337.

    Article  Google Scholar 

  31. Stouwdam J W, Janssen R A J. Electroluminescent Cu-doped CdS quantum dots [J]. Advanced Materials, 2009, 21(28): 2916–2920.

    Article  Google Scholar 

  32. Nien Y T, Chen P W, Chen I G. Synthesis and characterization of Zn1−x CdxS: Cu, Cl red electroluminescent phosphor powders [J]. Journal of Alloys and Compounds, 2008, 462(1–2): 398–403.

    Article  Google Scholar 

  33. Kumar C, Sonal S, Sandeep N. Study of composition dependent structural, optical, and magnetic properties of Cu-doped Zn1-x CdxS nanoparticles [J]. Journal of Applied Physics, 108(12): 123519.

  34. Pradhan N, Goorskey D, Thessing J, et al. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals [J]. Journal of the American Chemical Society, 2005, 127: 17586–17587.

    Article  Google Scholar 

  35. Wang Mingwen, Sun Lingdong, Fu Xuefeng, et al. Synthesis and optical properties of ZnS:Cu(II) nanoparticles [J]. Solid State Communications, 2000, 115: 493–496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yu.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (10904119)

Biography: YANG Yuezhou, male, Master candidate, research direction: quantum optics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Liang, S., Yu, X. et al. Microwave synthesis of Cu-doped ternary ZnCdS quantum dots with composition-controllable photoluminescence. Wuhan Univ. J. Nat. Sci. 17, 217–222 (2012). https://doi.org/10.1007/s11859-012-0831-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-012-0831-6

Key words

CLC number

Navigation