Skip to main content
Log in

Subposition assembly-based construction of non-frequent concept semi-lattice

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

An efficient way to improve the efficiency of the applications based on formal concept analysis (FCA) is to construct the needed part of concept lattice used by applications. Inspired by this idea, an approach that constructs lower concept semi-lattice called non-frequent concept semi-lattice in this paper is introduced, and the method is based on subposition assembly. Primarily, we illustrate the theoretical framework of subposition assembly for non-frequent concept semi-lattice. Second, an algorithm called Nocose based on this framework is proposed. Experiments show both theoretical correctness and practicability of the algorithm Nocose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ganter B, Wille R. Formal Concept Analysis, Mathematical Foundations [M]. Berlin: Springer-Verlag, 1999.

    Google Scholar 

  2. Wang Liming, Zhang Zhuo. Algorithm for closed frequent itemsets mining based on apposition assembly of iceberg concept lattices [J]. Journal of Computer Research and Development, 2007, 44(7): 1184–1190 (Ch).

    Article  Google Scholar 

  3. Zhang Zhuo, Li Shijun, Yu Wei, et al. Algorithm for mining global closed frequent itemsets based on partially subposition assembly of iceberg concept lattice [J]. Mini-Micro Systems, 2010, 31(3): 391–397 (Ch).

    MathSciNet  Google Scholar 

  4. Valtchev P, Missaoui R, Godin R, et al. Generating frequent itemsets incrementally: Two novel approaches based on Galois lattice theory [J]. Journal of Experimental & Theoretical Artificial Intelligence, 2002, 14(2–3): 115–142.

    Article  MATH  Google Scholar 

  5. Stumme G. Efficient data mining based on formal concept analysis [C]//Proceedings of the Database and Expert Systems Applications: 13th International Conference, DEXA 2002 Aix-en Provence (LNCS 2453). Berlin: Springer-Verlag, 2002: 534–546.

    Google Scholar 

  6. Stumme G, Taouil R, Bastide Y, et al. Computing iceberg concept lattices with Titanic [J]. Journal on Knowledge and Data Engineering, 2002, 42(2): 189–222.

    Article  MATH  Google Scholar 

  7. Valtchev P, Missaoui R, Godin R. Formal concept analysis for knowledge discovery and data mining: The new challenges [C]// International Conference on Formal Concept Analysis (ICFCA 2004) (LNCS 2961). Berlin: Springer-Verlag, 2004: 352–371.

    Google Scholar 

  8. Du Yajun, Li Haiming. Strategy for mining association rules for web pages based on formal concept analysis [J]. Appl Soft Comput, 2010, 10(3): 772–783.

    Article  Google Scholar 

  9. Cimiano P, Hotho A, Stumme G, et al. Conceptual knowledge processing with formal concept analysis and ontologies [C]// International Conference on Formal Concept Analysis (ICFCA 2004) (LNAI 2961). Berlin: Springer-Verlag, 2004: 189–207.

    Google Scholar 

  10. Valtchev P, Missaoui R. Similarity-based clustering versus Galois lattice building: Strengths and weaknesses [C/OL]. [2010-09-26]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1676&rep=rep1&type=pdf.

  11. Quan Thanh Tho, Siu Cheung Hui, et al. Automatic fuzzy ontology generation for semantic Web [J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(6): 842–856.

    Article  Google Scholar 

  12. Fu H, Mephu N E. A parallel algorithm to generate formal concepts for large data [C]//International Conference on Formal Concept Analysis (ICFCA 2004) (LNAI 2961). Berlin: Springer-Verlag, 2004: 394–401

    Google Scholar 

  13. Carpineto C, Romano G. Exploiting the potential of concept lattices for information retrieval with CREDO [J]. Journal of Universal Computer Science, 2004, 10(8): 985–1013.

    Google Scholar 

  14. Rouane M H, Nehme K, Valtchev P, et al. On-line maintenance of Iceberg concept lattices [C/OL]. [2010-09-25]. http://www.info2.uqam.ca/~godin/Articles/Rouane-et-al-ICCS04-Final.pdf.

  15. Kamal N, Valtchev P, Rouane M H, et al. On computing the minimal generator family for concept lattices and icebergs [C]//International Conference on Formal Concept Analysis (ICFCA 2005) (LNCS 3403). Berlin: Springer-Verlag, 2005: 192–207.

    Google Scholar 

  16. Wille R. Restructuring lattice theory: An approach based on hierarchies of concepts [C]// Rival I eds: Ordered Sets, Dordrecht: Reidel Press, 1982:445–470.

    Google Scholar 

  17. Kuznetsov S, Obiedkov S. Comparing performance of algorithms for generating concept lattices [J]. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2/3): 189–216.

    Article  MATH  Google Scholar 

  18. Ganter B. Formal concept analysis: Algorithmic aspects [B/OL]. [2010-09-26]. http://www.math.tu-dresden.de/~ganter/cl03/cl02.pdf.

  19. Godin R, Missaoui R, Alaoui H. Incremental concept formation algorithms based on Galois (concept) lattices [J]. Computational Intelligence, 1995, 11(2): 246–267.

    Article  Google Scholar 

  20. Valtchev P, Missaoui R. Building concept(Galois) lattices from parts: generalizing the incremental methods [C]//The 9th International Conference on Conceptual Structures: Broadening the Base (ICCS’01) (LNCS 2120), New York: Springer-Verlag, 2001: 290–303.

    Google Scholar 

  21. Valtchev P, Missaoui R, Pierre Lebrun. A partion-based approach towards constructing Galois(concept) lattices [J]. Discrete Mathematics, 2002, 256(3): 801–829.

    Article  MathSciNet  MATH  Google Scholar 

  22. Valtchev P, Duquenne V. Towards scalable divide-and-conquer methods for computing concepts and implications [C/OL]. [2010-09-26]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.7185&rep=rep1&type=pdf.

  23. UCI Learning Repository. Car Evaluation Data Set [DB/OL]. [2010-09-23]. http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Li.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (60970018) and the Fundamental Research Funds for the Central Universities

Biography: ZHANG Zhuo, male, Ph. D. candidate, research direction: formal concept analysis, Web data extraction and data mining.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhang, R., Gan, L. et al. Subposition assembly-based construction of non-frequent concept semi-lattice. Wuhan Univ. J. Nat. Sci. 16, 155–160 (2011). https://doi.org/10.1007/s11859-011-0729-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-011-0729-8

Key words

CLC number

Navigation