Skip to main content
Log in

Aqueous phase synthesis and fluorescence properties of inverted core/shell ZnSe/CdSe nanocrystals

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

We report a facile aqueous phase synthesis for preparing water-soluble inverted core/shell ZnSe/CdSe semiconductor nanocrystals. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and their optical properties were investigated by using UV-vis-NIR spectrophotometer and fluorescence spectrophotometer. The results indicate that the synthesized ZnSe/CdSe nanocrystals are inverted core/shell structure with diameter of about 5 nm. Furthermore, their absorption band-edge is red-shifted with the growth of CdSe shell; correspondingly, their emission wavelength can be tuned from 460 nm to 604 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281: 2013–2016.

    Article  Google Scholar 

  2. Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404(6773): 59–61.

    Article  Google Scholar 

  3. Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275: 1102–1106.

    Article  Google Scholar 

  4. Gao X, Cui Y, Levenson R M, et al. In Vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol, 2004, 22(8): 969–976.

    Article  Google Scholar 

  5. Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281: 2016–2018.

    Article  Google Scholar 

  6. Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotechnol, 2001, 19: 631–635.

    Article  Google Scholar 

  7. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271: 933–937.

    Article  Google Scholar 

  8. Gaponenko S V. Optical Properties of Semiconductor Nanocrystals[M]. Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  9. Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science, 2003, 300: 1434–1436.

    Article  Google Scholar 

  10. Coe S, Woo W K, Bawendi M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002, 420: 800–803.

    Article  Google Scholar 

  11. Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes[J]. Science, 2002, 295: 1506–1508.

    Article  Google Scholar 

  12. Yu X F, Chen L D, Li K Y, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo[J]. J Biomed Opt, 2007, 12(1): 014008.

    Article  Google Scholar 

  13. Chen Z Q, Lian C, Zhou D, et al. Greatly enhanced and controlled manganese photoluminescence in water-soluble ZnCdS: Mn/ZnS core/shell quantum dots[J]. Chem Phys Lett, 2010, 488: 73–76.

    Article  Google Scholar 

  14. Pandey A, Guyot-Sionnest P. Slow electron cooling in colloidal quantum dots[J]. Science, 2008, 322: 929–932.

    Article  Google Scholar 

  15. Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. J Phys Chem, 1996, 100: 468–471.

    Article  Google Scholar 

  16. Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallits[J]. J Phys Chem B, 1997, 101: 9463–9475.

    Article  Google Scholar 

  17. Chen Y, Vela J, Htoon H, et al. “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking[J]. J Am Chem Soc, 2008, 130: 5026–5027.

    Article  Google Scholar 

  18. Mahler B, Spinicelli P, Buil S, et al. Towards non-blinking colloidal quantum Dots[J]. Nat Mater, 2008, 7: 659–664.

    Article  Google Scholar 

  19. Kim S, Fisher B, Eisler H, et al. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures [J]. J Am Chem Soc, 2003, 125: 11466–11467.

    Article  Google Scholar 

  20. Nanda J, Ivanov S A, Htoon H, et al. Absorption cross sections and auger recombination lifetimes in inverted core/shell nanocrystals: implications for lasing performance[J]. J Appl Phys, 2006, 99: 034309.

    Article  Google Scholar 

  21. Klimov V I, Ivanov S A, Nanda J, et al. Single-exciton optical gain in semiconductor nanocrystals[J]. Nature, 2007, 447: 441–446.

    Article  Google Scholar 

  22. Balet L P, Ivanov S A, Piryatinski A, et al. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes[J]. Nano Lett, 2004, 4(8): 1485–1488.

    Article  Google Scholar 

  23. Ivanov S A, Nanda J, Piryatinski A, et al. Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime[J]. J Phys Chem B, 2004, 108: 10625–10630.

    Article  Google Scholar 

  24. Li J J, Wang Y A, Guo W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[ J]. J Am Chem Soc, 2003, 125: 12567–12575.

    Article  Google Scholar 

  25. Cao Y W, Banin U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals[J]. Angew Chem Int Ed, 1999, 38: 3692–3694.

    Article  Google Scholar 

  26. Zhong Xinhua, Xie Renguo, Zhang Ying, et al. High-Quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals[J]. Chem Mater, 2005, 17: 4038–4042.

    Article  Google Scholar 

  27. Bussian D A, Crooker S A, Yin M, et al. Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe-CdSe nanocrystals[J]. Nat Mater, 2009, 8: 35–40.

    Article  Google Scholar 

  28. Hao E, Zhang H, Yang B. Preparation of luminescent polyelectrolyte/Cu-doped ZnSe nanoparticle multilayer composite films[J]. J Collolid Interface Sci, 2001, 238: 285–290.

    Article  Google Scholar 

  29. Xie R G, Zhong X H, Basche T. Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores[J]. Adv Mater, 2005, 17: 2741–2745.

    Article  Google Scholar 

  30. Han J, Zhang H, Tang Y, et al. Role of redox reaction and electrostatics in transition-metal impurity-promoted photoluminescence evolution of water-soluble ZnSe nanocrystals[J]. J Phys Chem C, 2009, 113(18): 7503–7510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Hao.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (10874134) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060486031)

Biography: ZHOU Jing, male, Master candidate, research direction: synthesis and optical properties of nanomaterials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Jiang, L., Guo, W. et al. Aqueous phase synthesis and fluorescence properties of inverted core/shell ZnSe/CdSe nanocrystals. Wuhan Univ. J. Nat. Sci. 15, 320–324 (2010). https://doi.org/10.1007/s11859-010-0659-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-010-0659-x

Key words

CLC number

Navigation