Skip to main content
Log in

Hamiltonian theory for the DNLS equation with a squared spectral parameter

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

With a special gauge transformation, the Lax pair of the derivative nonlinear Shcrödinger (DNLS) equation turns to depend on the squared parameter λ = k 2 instead of the usual spectral parameter k. By introducing a new direct product of Jost solutions, the complete Hamiltonian theory of the DNLS equation is constructed on the basis of the squared spectral parameter, which shows that the integrability completeness is still preserved. This result will be beneficial to the further study of the DNLS equation, such as the direct perturbation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mjϕlhus E. Nonlinear Alfven waves and the DNLS equation: Oblique aspects[J]. Phys Scr, 1989, 40: 227–237.

    Article  Google Scholar 

  2. Rogister A. Parallel propagation of nonlinear low-frequency waves in high-β plasma[J]. Phys Fluids, 1971, 14(12): 2733–2739.

    Article  Google Scholar 

  3. Mjϕlhus E. On the modulational instability of hydromagnetic waves parallel to the magnetic field[J]. J Plasma Phys, 1976, 16: 321–334.

    Article  Google Scholar 

  4. Mio K, Ogino T, Minami K, et al. Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas[J]. J Phys Soc Jpn, 1976, 41: 265–271.

    Article  MathSciNet  Google Scholar 

  5. Mjϕlhus E, Hada T. Soliton theory of quasi-parallel MHD waves[M]// Hada T, Matsumoto H. Nonlinear Waves and Chaos in Space Plasmas. Tokyo: Terrapub, 1997: 121–170.

    Google Scholar 

  6. Spangler S R. Nonlinear evolutions of MHD waves at the earth’s bow shock: Opinions on the confrontation between theory, simulations and measurements[M]// Hada T, Matsumoto H. Nonlinear Waves and Chaos in Space Plasmas. Tokyo: Terrapub, 1997: 171–224.

    Google Scholar 

  7. Ruderman M S. DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-β Hall plasma[J]. J Plasma Phys, 2002, 67: 271–276.

    Article  Google Scholar 

  8. Ruderman M S. Propagation of solitons of the derivative nonlinear Schrödinger equation in a plasma with fluctuating density[J]. Phys Plasmas, 2002, 9: 2940–2945.

    Article  MathSciNet  Google Scholar 

  9. Zhou G Q, Huang N N. An N-soliton solution to the DNLS equation based on revised inverse scattering transform[J]. J Phys A: Math Theor, 2007, 40: 13607–13623.

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaup D J, Newell A C. An exact solution for a derivation nonlinear Schrödinger equation[J]. J Math Phys, 1978, 19: 798–801.

    Article  MATH  MathSciNet  Google Scholar 

  11. Zakharov V E, Shabat A B. Interaction between solitons in a stable medium[J]. Sov Phys JETP, 1972, 34: 62–69.

    MathSciNet  Google Scholar 

  12. Chen X J, Lam W K. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions[J]. Phys Rev E, 2004, 69: 066604.

    Article  MathSciNet  Google Scholar 

  13. Chen Z Y, Huang N N. Method of meromorphic matrix of transformation for giving soliton solutions of the modified nonlinear Schrödinger equation[J]. Phys Lett A, 1989, 142: 31–35.

    Article  MathSciNet  Google Scholar 

  14. Chen Z Y, Huang N N. Explicit N-soliton solution of the modified nonlinear Schrödinger equation[J]. Phys Rev A, 1990, 41: 4066–4069.

    Article  Google Scholar 

  15. Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Sov Phys JETP, 1973, 37: 823–828.

    Google Scholar 

  16. Chen X J, Yang J, Lam W K. N-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions[J]. J Phys A: Math Gen, 2006, 39: 3263–3274.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen X J, Wang H L, Lam W K. Two-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions[J]. Phys Lett A, 2006, 353: 185–189.

    Article  MATH  Google Scholar 

  18. Lashkin V M. N-soliton solutions and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions[J]. J Phys A: Math Theor, 2007, 40: 6119–6132.

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang C N, Yu J L, Wang Q Q, et al. Demonstration of inverse scattering transform for DNLS equation[J]. Commun Theor Phys, 2007, 48(2): 299–303.

    Article  MathSciNet  Google Scholar 

  20. Cai H, Huang N N. Green’s function method for perturbed DNLS equation with the squared spectrum parameter[J]. Physica D, 2005, 202: 60–70.

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen X J, Yang J K. Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified Schrödinger equation[J]. Phys Rev E, 2002, 65: 066608.

    Article  MathSciNet  Google Scholar 

  22. Chen X J, Lam W K. Calculating adiabatic evolution of the perturbed DNLS/MNLS solitons[J]. Phys Lett A, 2005, 339: 440–445.

    Article  MATH  Google Scholar 

  23. Huang N N. Marchenko equation for the derivative nonlinear Schrödinger equation[J]. Chin Phys Lett, 2007, 24(4): 894–897.

    Article  Google Scholar 

  24. Huang Nianning, Chen Shirong. Completely Integrable Hamiltonian Theory of Nonlinear Equations[M]. Beijing: Science Press, 2005(Ch).

    Google Scholar 

  25. Cai H, Huang N N. The Hamiltonian formalism of the DNLS equation with a nonvanished boundary value[J]. J Phys A: Math Gen, 2006, 39: 5007–5014.

    Article  MATH  MathSciNet  Google Scholar 

  26. Faddeev L D, Takhtajan L A. Hamiltonian Methods in the Theory of Solitons[M]. Berlin: Springer-Verlag, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cai.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (10705022)

Biography: ZHANG Jin, female, Master candidate, research direction: nonlinear equation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yan, T. & Cai, H. Hamiltonian theory for the DNLS equation with a squared spectral parameter. Wuhan Univ. J. Nat. Sci. 15, 315–319 (2010). https://doi.org/10.1007/s11859-010-0658-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-010-0658-y

Key words

CLC number

Navigation