Skip to main content
Log in

A distributed dynamic clustering algorithm for wireless sensor networks

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

This paper proposes a distributed dynamic k-medoid clustering algorithm for wireless sensor networks (WSNs), DDKCAWSN. Different from node-clustering algorithms and protocols for WSNs, the algorithm focuses on clustering data in the network. By sending the sink clustered data instead of practical ones, the algorithm can greatly reduce the size and the time of data communication, and further save the energy of the nodes in the network and prolong the system lifetime. Moreover, the algorithm improves the accuracy of the clustered data dynamically by updating the clusters periodically such as each day. Simulation results demonstrate the effectiveness of our approach for different metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heinzelman W B, Chandrakasan A P, Balakrishnan H. Energy Efficient Communication Protocol for Wireless Microsensor Networks [C] // Proceedings of the 33rd Hawaii International Conference on System Sciences. Washington, D C: IEEE Computer Society, 2000: 3005–3014.

    Google Scholar 

  2. Heinzelman W B, Chandrakasan A, Balakrishnan H. An Application-Specific Protocol Architecture for Wireless Microsensor Networks [J]. IEEE Trans Wireless Communication, 2002, 1(4): 660–670.

    Article  Google Scholar 

  3. Manjeshwa R A, Agrawal D. TEEN: a Protocol for Enhanced Efficiency in Wireless Sensor Networks [C] // Proceedings of the 1st International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing. New York: ACM Press, 2001: 304–309.

    Google Scholar 

  4. Arati M, Dharma P A. APTEEN: a Hybrid Protocol for Efficient Routing and Comprehensive Information Retrieval in Wireless Sensor Networks [C] // Proceedings of the 2nd International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing. Fort Lauderdale, Washington D C: IEEE Computer Society, 2002: 195–202.

    Google Scholar 

  5. Lindsey S, Raghavendra C. PEGASIS: Power Efficient Gathering in Sensor Information Systems [C] // Proceedings of the IEEE Aerospace Conference, Montana: IEEE, 2002: 1125–1130.

    Google Scholar 

  6. Yonis O. HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad-hoc Sensor Networks [J]. IEEE Trans on Mobile Computing, 2003, 3(4): 366–379.

    Article  Google Scholar 

  7. Arjan D, Vamsi P, Leonard B. Delay-Energy Aware Routing Protocol for Sensor and Actor Networks [J]. Proceedings of ICPADS 2005 IEEE, 2005, 1: 292–298.

    Google Scholar 

  8. Antonio G R, Richard T. An Energy-Efficient and Low-latency Routing Protocol for Wireless Sensor Networks [C] // Proceedings of the 2005 Systems Communications (ICW′05, ICHSN′05, ICMCS′05, SENET′05), Washington D C: IEEE Computer Society, 2005: 449–454.

    Google Scholar 

  9. Hulten G, Spencer L. Mining Time-Changing Data Streams [C] // Proceedings of the ACM Conference on Knowledge and Data Discovery (SIGKDD). New York: ACM Press, 2001: 97–106.

    Google Scholar 

  10. Aggarwal C C, Han J, Wang J, et al. A Framework for Clustering Evolving Data Streams [C] // Proceedings of the 29th VLDB Conference. Berlin: VLDB Press, 2003: 81–92.

    Google Scholar 

  11. Brian B, Mayur D, Rajeev M, et al. Maintaining Variance and K-medians over Data Stream Windows [C] // ACM SIGMOD Principles of Database Systems (PODS). New York: ACM Press, 2003: 234–243.

    Google Scholar 

  12. Jessica L, Michail V, Eamonn K, et al. Iterative Incremental Clustering of Time Series [C] // Proceedings of the IX Conference on Extending Database Technology (EDBT 2004). Washington D C: IEEE Computer Society, 2004: 333–342.

    Google Scholar 

  13. Dhillon I, Modha D. A Data-Clustering Algorithm on Distributed Memory Multiprocessors [C] // Proceeding of the KDD′99 Workshop on High Performance Knowledge Discovery. Berlin: Springer Verlag, 1999: 245–260.

    Google Scholar 

  14. Kargupta H, Huang W, Sivakumar K, et al. Distributed Clustering Using Collective Principal Component Analysis [J]. Knowledge and Information Systems Journal, 2001, 3: 422–448.

    Article  MATH  Google Scholar 

  15. Matthias K, Stefano L, Gianluca M. Distributed Clustering Based on Sampling Local Density Estimates [C] // Proceedings of the Joint International Conference on AI. Mexico: Morgan Kaufmann Press, 2003: 485–490.

    Google Scholar 

  16. Eisenhardt M, Muller W, Henrich A. Classifying Documents by Distributed P2P Clustering [C] // Proceedings of Informatics. Berlin: Springer Verlag, 2003: 286–291.

    Google Scholar 

  17. Aleksandar L, Dragoljub P, Zoran O. Distributed Clustering and Local Regression for Knowledge Discovery in Multiple Spatial Databases [C/OL] // Proceedings of the 8th European Symposium on Artificial Neural Networks. [2006-11-20]. http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es200-0-20.pdf .

  18. Fred A F N, Jain A K. Data Clustering Using Evidence Accumulation [C] // Proceedings of the International Conference on Pattern Recognition. Berlin: Springer Verlag, 2002: 276–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Chen.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (60472047)

Biography: WANG Leichun (1974–), male, Ph.D. candidate, research direction: wireless communication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Chen, S. & Hu, R. A distributed dynamic clustering algorithm for wireless sensor networks. Wuhan Univ. J. Nat. Sci. 13, 148–152 (2008). https://doi.org/10.1007/s11859-008-0205-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-008-0205-2

Key words

CLC number

Navigation