Abstract
Given the relevance of graphs of functions, we consider their inclusion in primary education from the functional approach to early algebra. The purpose of this article is to shed some light on the students’ production and reading of graphs when they solved generalization problems from a functional thinking approach. We aim to explore how 3rd and 4th graders construct graphs associated to functions and what elements they use; and how they read function associated graphs and whether they connect pairs of values to see beyond the data. After four working sessions about functions, we designed and implemented individual interviews to 12 students. Through a qualitative analysis, we highlight that the students can read data in a graph on two different cognitive levels and also construct it from different elements of the graph initially provided. Regarding data reading, we evidence two levels: (a) literal reading of a given element in the graph, and (b) reading beyond the data. The construction of the graph is described with base on the axes, values and labels on the axes, scale of the axes, and construction techniques. We present examples of students’ work that evidence that graph construction varied depending on whether it was created from a blank sheet or it was necessary to provide help regarding the axes or the scale of the graph. We describe several techniques used by the students in the representation of data that yield non-canonical representations of a graph and that help glimpse how students are interpreting this representation.


















Similar content being viewed by others
References
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215–241.
Arteaga, P., Díaz-Levicoy, D., & Batanero, C. (2021). Reading line diagrams by Chilean elementary school students. Statistics Education Research Journal, 20(2), 6. https://doi.org/10.52041/serj.v20i2.339
Ayala-Altamirano, C., & Molina, M. (2020). Meanings attributed to letters in functional contexts by Primary school students. International Journal of Science and Mathematics Education., 18(7), 1271–1291. https://doi.org/10.1007/s10763-019-10012-5
Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95, 181–202. https://doi.org/10.1007/s10649-016-9745-0
Blanton, M. L., & Kaput, J. J. (2004). Elementary grades students’ capacity for functional thinking. In M. Hoines & A. Fuglestad (Eds.), Proceedings of the 28th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 135–142). PME & Bergen University College.
Blanton, M. L., Levi, L., Crites, T., & Dougherty, B. J. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3–5. NCTM.
Brizuela, B., & Earnest, D. (2008). Multiple notational systems and algebraic understanding: The case of the “best deal” problem. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 273–302). LEA.
Brizuela, B. M., Blanton, M., & Kim, Y. (2021). A Kindergarten student’s uses and understandings of tables while working with function problems. In A. G. Spinillo, S. L. Lautert, & R. E. Borba (Eds.), Mathematical reasoning of children and adults: Teaching and learning from an interdisciplinary approach (pp. 171–190). Springer.
Cai, J. (2005). US and Chinese teachers’ constructing, knowing and evaluating representations to teach mathematics. Mathematical Thinking and Learning, 7(2), 135–169. https://doi.org/10.1207/s15327833mtl0702_3
Cañadas, M. C., Brizuela, B. M., & Blanton, M. (2016). Second graders articulating ideas about linear functional relationships. Journal of Mathematical Behavior, 41, 87–103. https://doi.org/10.1016/j.jmathb.2015.10.004
Cañadas, M. C., & Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 67–78. https://doi.org/10.30827/pna.v1i2.6213
Cañadas, M. C., & Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades [Approach to the conceptual framework and background of functional thinking in early years]. In E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruiz, & M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209–218). Comares.
Canavarro, A. P. (2009). O pensamento algébrico na aprendizagem da Matemática nos primeiros anos [Algebraic thinking in learning mathematics in the early years]. Quadrante, 16(2), 81–118. https://doi.org/10.48489/quadrante.22816
Carraher, D., Martinez, M., & Schliemann, A. (2008). Early algebra and mathematical generalization. ZDM – Mathematics Education, 40, 3–22. https://doi.org/10.1007/s11858-007-0067-7
Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. Lester (Ed.), Handbook of research in mathematics education (pp. 669–705). Information Age Publishing.
Carraher, D. W., Schliemann, A. D., Brizuela, B. M. Y., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115.
Dienes, Z. P. (1971). Estados y operadores. 1: Operadores aditivos [States and operators. 1: Additive operators]. Teide.
Ellis, A. B. (2007). Connections between generalizing and justifying: Students’ reasoning with linear relationships. Journal for Research in Mathematics Education, 38(3), 194–229.
Freudenthal, H. (1982). Variables and functions. In: G. V. Barneveld y H. Krabbendam (Eds.), Proceedings of conference on functions (pp. 7–20). National Institute for Curriculum Development.
Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications source. Journal for Research in Mathematics Education, 32(2), 124–158. https://doi.org/10.2307/749671
Hidalgo-Moncada, D., & Cañadas, M. C. (2020). Intervenciones en el trabajo con una tarea de generalización que involucra las formas directa e inversa de una función en sexto de primaria [Interventions when working with a generalization task which involves the direct and inverse forms of a function in Sixth Grade of Primary]. PNA, 14(3), 204–225. https://doi.org/10.30827/pna.v14i3.11378
Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). MacMillan.
Kaput, J. J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. National Center for Improving Student Learning and Achievement in Mathematics and Science.
Kaput, J. J. (2008). What is algebra? What is the algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Lawrence Erlbaum Associates.
Kaput, J. J., Carraher, D. W., & Blanton, M. L. (Eds.) (2008). Algebra in the early grades. Lawrence Erlbaum Associates.
Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), 8th International Congress on Mathematical Education: Selected lectures (pp. 271–290). SAEM Thales.
Kieran, C. (2022). The multidimensionality of early algebraic thinking: Background, overarching dimensions, and new directions. ZDM – Mathematics Education, 54, 1131–1150. https://doi.org/10.1007/s11858-022-01435-6
Kosslyn, S. M. (1994). Elements of graph design. Freeman.
Martí, E., Gabucio, F., Enfedaque, F., & Gilabert, S. (2010). Cuando los alumnos interpretan un gráfico de frecuencias. Niveles de comprensión y obstáculos cognitivos [When students interpret a frequency graph. Comprehension levels and cognitive obstacles]. Revista IRICE, 21, 65–81.
Mason, J. (2017). Overcoming the algebra barrier: Being particular about the general, and generally looking beyond the particular, in homage to Mary Boole. In S. Stewart (Ed.), And the rest is just algebra (pp. 97–117). Springer. https://doi.org/10.1007/978-3-319-45053-7_6
McCormick, B. H., DeFantim, T. A., & Brown, M. D. (1987). Visualization in scientific computing: Definition, domain, and recommendations. Computer Graphics, 21, 3–13.
Morales, R., Cañadas, M. C., Brizuela, B. M., & Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de Educación Primaria en un contexto funcional [Functional relationships and strategies of first graders in a functional context]. Enseñanza De Las Ciencias, 36(3), 59–78. https://doi.org/10.5565/rev/ensciencias.2472
Morris, A. K. (2009). Representations that enable children to engage in deductive arguments. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 87–101). Routledge.
Narváez, R. Y., & Cañadas, M. C. (2023). Mediaciones realizadas a estudiantes de segundo de primaria en una tarea de generalización [Mediations Carried out with Second Graders in a Generalization Context]. PNA, 17(3), 239–264. https://doi.org/10.30827/pna.v17i3.24153
Pang, J., & Sunwoo, J. (2022). Design of a pattern and correspondence unit to foster functional thinking in an elementary mathematics textbook. ZDM–Mathematics Education, 6, 1315–1331. https://doi.org/10.1007/s11858-022-01411-0
Pincheira, N., & Alsina, A. (2021). Hacia una caracterización del álgebra temprana a partir del análisis de los currículos contemporáneos de Educación Infantil y Primaria [Towards a characterization of early algebra from the analysis of the contemporary curricula of Early Childhood Education and Primary Education]. Educación Matemática, 33(1), 153–180. https://doi.org/10.24844/em3301.06
Pinto, E., Cañadas, M. C., & Moreno, A. (2022). Functional relationships evidenced and representations used by third graders within a functional approach to early algebra. International Journal of Science and Mathematics Education, 20, 1183–1202. https://doi.org/10.1007/s10763-021-10183-0
Ponte, J. P. (1984). Functional reasoning and the interpretation of cartesian graphs. PhD Thesis. University of Georgia.
Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics, 42(3), 237–268. https://doi.org/10.1023/A:1017530828058
Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5, 37–70. https://doi.org/10.1207/S15327833MTL0501_02
Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-years-olds (pp. 3–25). Springer.
Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigación en Educación Matemática [On the notions of representation and understanding notions in mathematics education research]. PNA, 4(1), 1–14. http://hdl.handle.net/11162/79435
Ruiz, B. J. (2014). Matemáticas 4. Precálculo: funciones y aplicaciones. Bachillerato General [Mathematics 4. Precalculus: functions and applications. General Baccalaureate] (2a. ed.). Larousse - Grupo Editorial Patria.
Schwartz, J. (1990). Getting students to function in and with algebra. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 261–289). Mathematics Associations of America.
Selling, S. K. (2016). Learning to represent, representing to learn. Journal of Mathematical Behavior, 41, 191–209. https://doi.org/10.1016/j.jmathb.2015.10.003
Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Gardiner, A. M. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143–166. https://doi.org/10.1080/10986065.2017.1328636
The Ontario Public Service (2020) The Ontario curriculum. Grades 1–8. Mathematics. Author.
Torres, M. D., Brizuela, B. M., Moreno, A., & Cañadas, M. C. (2022). Introducing tables to second-grade elementary students in an algebraic thinking context. Mathematics, 10, 56. https://doi.org/10.3390/math10010056
Torres, M. D., Moreno, A., & Cañadas, M. C. (2021). Generalization process by second grade students. Mathematics, 9, 1109. https://doi.org/10.3390/math9101109
Watanabe, T. (2008). Algebra in elementary school: A Japanese perspective. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 183–193). NCTM.
Funding
It was funded by the projects EDU2016-75771-P, and PID2020-113601 GB-I00, financed by MCIN/AEI/10.13039/501100011033.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cañadas, M.C., Moreno, A. & Torres, M.D. First encounter with constructing graphs in the functional thinking approach to school algebra in 3rd and 4th grades. ZDM Mathematics Education 56, 1059–1078 (2024). https://doi.org/10.1007/s11858-024-01627-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11858-024-01627-2


