Skip to main content

The interplay between history of Mathematics and Digital Technologies: a review

Abstract

This article is a review of the literature on the use of history of mathematics in combination with use of digital technologies in the teaching and learning of mathematics. The review identifies 33 peer-reviewed publications (book chapters, journal articles, and papers in conference proceedings) that address an actual interplay between use of history and digital technologies. Of these, 24 concern the use of primary historical source material, i.e., mathematical texts produced by past (historical) mathematicians. Besides asking the questions of which publications actually incorporate this interplay and what purposes the use of history and digital technology serve, we also address the question of the role of mathematics education theoretical perspectives (or the lack thereof) in the identified publications. A reading of the identified publications shows that the ones involving use of primary historical source material often have a clearer connection to theoretical constructs from mathematics education research (outside the area of History and Pedagogy of Mathematics, or HPM). Still, only a small number of the identified publications make use of mathematics education theoretical constructs specifically addressing the use of digital technology.

This is a preview of subscription content, access via your institution.

References

  • Aguilar, M. S., & Zavaleta, J. G. M. (2015). The difference as an analysis tool of the change of geometric magnitudes: the case of the circle. In E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and Epistemology in Mathematics Education. Proceedings of the Seventh European Summer University. (pp. 391–399). Danish School of Education

  • Arcavi, A., & Bruckheimer, M. (2000). Didactical uses of primary sources from the history of mathematics. Themes in Education, 1(1), 55–74

    Google Scholar 

  • Arcavi, A., Bruckheimer, M., & Ben-Zvi, R. (1987). History of mathematics for teachers: the case of irrational numbers. For the Learning of Mathematics, 7(2), 18–23

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. https://doi.org/10.1023/A:1022103903080

    Article  Google Scholar 

  • Artigue, M. (2010). The future of teaching and learning mathematics with digital technologies. In C. Hoyles, & J. B. Lagrange (Eds.), Mathematics education and technology – Rethinking the terrain (The 17th ICMI Study) (pp. 463–475). Springer

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2007). The transition to formal proof in geometry. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 305–323). Sense Publishers

  • Baki, A., & Guven, B. (2009). Khayyam with Cabri: experiences of pre-service mathematics teachers with Khayyam’s solution of cubic equations in dynamic geometry environment. Teaching Mathematics and Its Applications: An International Journal of the IMA, 28(1), 1–9. https://doi.org/10.1093/teamat/hrp001

    Article  Google Scholar 

  • Bakker, A., & Gravemeijer, K. P. E. (2006). An historical phenomenology of mean and median. Educational Studies in Mathematics, 62, 149–168. https://doi.org/10.1007/s10649-006-7099-8

    Article  Google Scholar 

  • Barbin, E. (1997). Histoire des Mathématiques: Pourquoi? Comment? Bulletin AMQ, Montréal, 37(1), 20–25

    Google Scholar 

  • Barnett, J. H., Lodder, J., & Pengelley, D. (2014). The pedagogy of primary historical sources in mathematics: Classroom practice meets theoretical frameworks. Science & Education, 23(1), 7–27. https://doi.org/10.1007/s11191-013-9618-1

    Article  Google Scholar 

  • Bartolini Bussi, M. G., & Pergola, M. (1996). History in the mathematics classroom: Linkages and kinematic geometry. In H. N. Jahnke, N. Knoche, & M. Otte (Eds.), Geschichte der Mathematik in der Lehre (pp. 36–67). Vandenhoek & Ruprecht

  • Breuer, S., & Zwas, G. (1993). Numerical mathematics: A laboratory approach. Cambridge University Press

  • Burke, M. J., & Burroughs, E. A. (2009). Using CAS to solve classical mathematics problems. Mathematics Teacher, 102(9), 672–679. https://doi.org/10.5951/MT.102.9.0672

    Article  Google Scholar 

  • Caglayan, G. (2016). Exploring the lunes of Hippocrates in a dynamic geometry environment. BSHM Bulletin, 31(2), 144–153. https://doi.org/10.1080/17498430.2015.1122301

    Article  Google Scholar 

  • Cauchy, A. L. (1821). Cours d’Analyse: Analyse algébrique. De Bure

  • Chebyshev, P. L. (1856). Oeuvres de P. L. Tchebycheff, Publiées par les Soins de MM. A. Markoff et N. Sonin, Tome 1. Chelsea Publishing Company

  • Chorlay, R. (2015). Making (more) sense of the derivative by combining historical sources and ICT. In E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and Epistemology in Mathematics Education. Proceedings of the Seventh European Summer University (pp. 485–498). Danish School of Education

  • Chorlay, R. (2016). Historical sources in the classroom and their educational effects. In L. Radford, F. Furinghetti, & T. Hausberger (Eds.), Proceedings of HPM 2016 (pp. 5–23). IREM de Montpellier

  • Clark, K. M. (2012). History of mathematics: illuminating understanding of school mathematics concepts for prospective mathematics teachers. Educational Studies in Mathematics, 81(1), 67–84. https://doi.org/10.1007/s10649-011-9361-y

    Article  Google Scholar 

  • Cornu, B. (1981). Apprentissage de la notion de limite: Modèles spontanés et modèles propres. In C. Comiti (Ed.), Proceedings of the 5th International Conference for the Psychology of Mathematics Education (pp. 322–329)

  • Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced mathematical thinking (pp. 153–166). Kluwer

  • Costabile, F., & Serpe, A. (2010). Archimedes in secondary schools: A teaching proposal for the math curriculum. In S. A. Paipetis, & M. Ceccarelli (Eds.), The genius of Archimedes: 23 centuries of influence on mathematics, science and engineering (pp. 479–491). Springer

  • Cottrill, J., & Dubinsky, E. (1996). Understanding the limit concept: Beginning with a coordinated scheme. The Journal of Mathematical Behavior, 15(2), 167–192

    Article  Google Scholar 

  • Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. The Journal of Mathematical Behavior, 5(3), 281–303

    Google Scholar 

  • Dennis, D., & Confrey, J. (1995). Functions of a curve: Leibniz’s original notion of functions and its meaning for the parabola. The College Mathematics Journal, 26(3), 124–131

    Article  Google Scholar 

  • Dennis, D., & Confrey, J. (1997). Drawing logarithmic curves with Geometer’s SketchPad: A method inspired by historical sources. In J. King, & D. Schattschneider (Eds.), Geometry turned on: Dynamic software in learning, teaching and research (pp. 147–156). The Mathematical Association of America

  • Descartes, R. (1637/1954). The geometry of René Descartes. [Translated by D. E. Smith & M. L. Latham] Dover Publications

  • Dreyfus, T., & Hillel, J. (1998). Reconstruction of meanings for function approximation. International Journal of Computers for Mathematical Learning, 3(2), 93–112

    Article  Google Scholar 

  • Euler, L. (1748). Introductio in analysin infinitorum. Tomus primus. Apud Marcum-Michaelem Bousquet & Socios

  • Furinghetti, F. (2002). On the role of the history of mathematics in mathematics education. In I. Vakalis, D. H. Hallett, C. Kourouniotis, D. Quinney, & C. Tzanakis (Eds.), 2nd International Conference on the Teaching of Mathematics (at the undergraduate level). Crete, Greece. http://users.math.uoc.gr/~ictm2/Proceedings/ICTM2_Proceedings_Table_of_Contents.html

  • Furinghetti, F., Jahnke, H. N., & van Maanen, J. (Eds.). (2006). Report No22/2006 on the Mini-workshop on studying original sources in mathematics education. Mathematisches Forschungsinstitut Oberwolfach

  • Furinghetti, F., & Radford, L. (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In L. English (Ed.), Handbook of international research in mathematics education, 2nd Edition (pp. 626–655). Routledge

  • Gulikers, I., & Blom, K. (2001). ‘A historical angle’. A survey of recent literature on the use and value of history in geometrical education. Educational Studies in Mathematics, 47(2), 223–258

    Article  Google Scholar 

  • Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805–842). Information Age

  • Hašek, R., & Zahradník, J. (2015). Study of historical geometric problems by means of CAS and DGS. International Journal for Technology in Mathematics Education, 22(2), 53–58

    Google Scholar 

  • Isoda, M. (1998). Developing the curriculum for curves using history and technology. In W.-C. Yang, K. Shirayanagi, S.-C. Chu, & G. Fitz-Gerald (Eds.), Electronic Proceedings of the 3rd Asian Technology Conference in Mathematics (pp. 82–89)

  • Isoda, M. (2000a). Inquiring mathematics with history and software. In J. Fauvel, & van J. Maanen (Eds.), History in mathematics education, the ICMI study (pp. 351–358). Kluwer

  • Isoda, M. (2000b). The use of technology in teaching mathematics with history – Teaching with modern technology inspired by the history of mathematics. In W.-S. Horng & F.-L. Lin (Eds.), Proceedings of the HPM 2000 Conference, History in mathematics education, Challenges for a new millennium (pp. 27–34). Department of Mathematics, National Taiwan Normal University

  • Isoda, M. (2004). Why we use historical tools and computer software in mathematics education: mathematics activity as a human endeavor project for secondary school. In F. Furinghetti, S. Kaijser, & C. Tzanakis (Eds.), Proceedings HPM2004 & ESU4 (pp. 229–236). Uppsala University

  • Isoda, M., & Aoyama, K. (2000). The change of belief in mathematics via exploring historical text with technology in the case of undergraduates. In W.-C. Yang, S.-C. Chu, & J.-C. Chuan (Eds.), Electronic Proceedings of the 5th Asian Technology Conference in Mathematics (pp. 132–141)

  • Jahnke, H. N. (2000). The use of original sources in the mathematics classroom. In J. Fauvel, & van J. Maanen (Eds.), History in mathematics education, the ICMI study (pp. 291–328). Kluwer

  • Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71, 235–261. https://doi.org/10.1007/s10649-008-9174-9

    Article  Google Scholar 

  • Jankvist, U. T. (2011). Essay Review. A century of mathematics education: ICMI’s first hundred years. Historia Mathematics, 38(2), 292–302

    Article  Google Scholar 

  • Jankvist, U. T. (2014). On the use of primary sources in the teaching and learning of mathematics. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 873–908). Springer

  • Jankvist, U. T., & Geraniou, E. (2019). Digital technologies as a way of making original sources more accessible to students. In E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, & C. Tzanakis (Eds.), Proceedings of the Eighth European Summer University on History and Epistemology in Mathematics Education (pp. 107–130). Oslo Metropolitan University

  • Jankvist, U. T., & Geraniou, E. (2021). “Whiteboxing” the content of a formal mathematical text in a dynamic geometry environment. Digital Experiences in Mathematics Education, 7(3), 222–246. https://doi.org/10.1007/s40751-021-00088-6

    Article  Google Scholar 

  • Jankvist, U. T., & Kjeldsen, T. H. (2011). New avenues for history in mathematics education: Mathematical competencies and anchoring. Science & Education, 20(9), 831–862. https://doi.org/10.1007/s11191-010-9315-2

    Article  Google Scholar 

  • Jankvist, U. T., & Misfeldt, M. (2019). CAS assisted proofs in upper secondary school mathematics textbooks. REDIMATJournal of Research in Mathematics Education, 8(3), 232–266. https://doi.org/10.17583/redimat.2019.3315

  • Jankvist, U. T., & Misfeldt, M. (2021). Old frameworks—New technologies. Canadian Journal of Science, Mathematics and Technology Education, 21(1), 441–455. https://doi.org/10.1007/s42330-021-00164-4

    Article  Google Scholar 

  • Jankvist, U. T., Clark, K. M., & Mosvold, R. (2020). Developing mathematical knowledge for teaching teachers: Potentials of history of mathematics in teacher educator training. Journal of Mathematics Teacher Education, 23, 311–332. https://doi.org/10.1007/s10857-018-09424-x

    Article  Google Scholar 

  • Jankvist, U. T., Misfeldt, M., & Aguilar, M. S. (2019a). Tschirnhaus’ transformation: mathematical proof, history and CAS. In E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad, & C. Tzanakis (Eds.), Proceedings of the Eighth European Summer University on History and Epistemology in Mathematics Education (pp. 319–330). Oslo Metropolitan University

  • Jankvist, U. T., Misfeldt, M., & Aguilar, M. S. (2019b). What happens when CAS-procedures are objectified? – the case of “solve” and “desolve”. Educational Studies in Mathematics, 101(1), 67–81. https://doi.org/10.1007/s10649-019-09888-5

    Article  Google Scholar 

  • Jankvist, U. T., Mosvold, R., Fauskanger, J., & Jakobsen, A. (2015). Analysing the use of history of mathematics through MKT. International Journal of Mathematical Education in Science and Technology, 46(4), 495–507. https://doi.org/10.1080/0020739X.2014.990528

    Article  Google Scholar 

  • Kántor, T., & Tóth, A. (2016). Teaching of old historical mathematics problems with ICT tools. Teaching Mathematics and Computer Science, 14(1), 13–24. https://doi.org/10.5485/TMCS.2016.0400

    Article  Google Scholar 

  • Kent, D., & Sherman, M. (2015, August). A GeoGebra rendition of one of Omar Khayyam’s solutions for a cubic equation. Convergence. https://www.maa.org/press/periodicals/convergence/a-geogebra-rendition-of-one-of-omar-khayyams-solutions-for-a-cubic-equation

  • Kidron, I. (2001). Teaching Euler’s algebraic methods in a calculus laboratory. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Conference: The future of the teaching and learning of algebra (Vol. 2, pp. 368–375). University of Melbourne

  • Kidron, I. (2004). Polynomial approximation of functions: Historical perspective and new tools. International Journal of Computers for Mathematical Learning, 8(3), 299–331. https://doi.org/10.1023/B:IJCO.0000021793.71677.cd

    Article  Google Scholar 

  • Kidron, I., & Tall, D. (2015). The roles of visualization and symbolism in the potential and actual infinity of the limit process. Educational Studies in Mathematics, 88(2), 183–199. https://doi.org/10.1007/s10649-014-9567-x

    Article  Google Scholar 

  • Kidron, I., Zehavi, N., & Openhaim, E. (2001). Teaching the limit concept in a CAS environment: Students’ dynamic perception and reasoning. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 241–248). Freudenthal Institute

  • Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation: history as a method for learning meta-discursive rules in mathematics. Educational Studies in Mathematics, 80, 327–349. https://doi.org/10.1007/s10649-011-9352-z

    Article  Google Scholar 

  • Laborde, C., Keyton, M., Holzl, R., Kobayashi, I., Laborde, J. M., Hassal, M. … Engebretsen, A. (1996). Cabri geometry II, Geometry for the world. Texas Instruments

  • Lagrange, J. L. (1884). Oeuvres. publiées par les soins de M.J.A Serrat. Vol. X. Gauthier-Villars

  • Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. Addison Wesley

  • Meadows, M., & Caniglia, J. (2021). That was then… This is now: Utilizing the history of mathematics and dynamic geometry software. International Journal of Education in Mathematics, Science and Technology, 9(2), 198–212. https://doi.org/10.46328/ijemst.1106

    Article  Google Scholar 

  • Michalowicz, K. D. (2000). History in support of diverse educational requirements: Opportunities for change. In J. Fauvel, & van J. Maanen (Eds.), History in mathematics education: The ICMI study (pp. 172–200). Kluwer

  • Misfeldt, M., & Jankvist, U. T. (2018). Instrumental genesis and proof: Understanding the use of computer algebra systems in proofs in textbooks. In L. Ball, P. Drijvers, S. Ladel, H. S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education: Tools, topics and trends (pp. 375–385). Springer

  • Niss, M. (2007). Reflections on the state of and trends in research on mathematics teaching and learning: From here to Utopia. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1293–1312). Information Age

  • Papadopoulos, I. (2014). How Archimedes helped students to unravel the mystery of the magical number pi. Science & Education, 23(1), 61–77. https://doi.org.10.1007/s11191-013-9643-0

  • Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: a developmental perspective. Interacting with Computers, 15(5), 665–691. https://doi.org/10.1016/S0953-5438(03)00058-4

    Article  Google Scholar 

  • Runge, C. (1901). Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik, 46, 224–243

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715

    Article  Google Scholar 

  • Siu, M. K., & Tzanakis, C. (2004). History of mathematics in classroom: Appetizer? Main course? Or dessert? Mediterranean Journal for Research in Mathematics Education, 3(1–2), v–x

    Google Scholar 

  • Smestad, B. (2012). Not just “telling stories”. History of mathematics for teacher students: What is it and how to teach it. Paper presented in ICME-12, Seoul, Korea

  • Tall, D. (1989). Different cognitive obstacles in a technological paradigm. Research issues in the learning and teaching of algebra (pp. 87–92). National Council of Teachers of Mathematics

  • Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495–511). Macmillan

  • Tall, D. (1993). Real mathematics, rational computers and complex people. In L. Lum (Ed.), Proceedings of the Fifth Annual International Conference on Technology in College Mathematics Teaching (pp. 243–258). Addison-Wesley

  • Tall, D. (1995). Cognitive growth in elementary and advanced mathematical thinking. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th International Conference for the Psychology of Mathematics Education (pp. 61–75). Atual Editora Ltda

  • Tall, D. (2000a). Technology and versatile thinking in mathematical development. In M. O. J. Thomas (Ed.), Proceedings of TIME 2000, an International Conference on the Technology in Mathematics Education (pp. 33–50). The University of Auckland

  • Tall, D. (2000b). Cognitive development in advanced mathematics using technology. Mathematics Education Research Journal, 12(3), 196–218. https://doi.org/10.1007/BF03217085

    Article  Google Scholar 

  • Thomsen, M. (2021). Working with Euclid’s geometry in GeoGebra. In G. A. Nortvedt, N. F. Buchholtz, J. Fauskanger, F. Hreinsdóttir, M. Hähkiöniemi, B. E. Jessen, J. Kurvits, Y. Liljekvist, M. Misfeldt, M. Naalsund, H. K. Nilsen, G. Pálsdóttir, P. Portaankorva-Koivisto, J. Radišić, & A. Wernberg (Eds.), Bringing Nordic mathematics education into the future: Proceedings of NORMA 20, The Ninth Nordic Conference on Mathematics Education (pp. 257–264). Swedish Society for Research in Mathematics Education

  • Thomsen, M., & Jankvist, U. T. (2020). Reasoning with digital technologies – counteracting students’ techno-authoritarian proof schemes. In A. Donevska-Todorova, E. Faggiano, J. Trgalova, Z. Lavicza, R. Weinhandl, A. Clark-Wilson, & H.-G. Weigand. (Eds.) Proceedings of the Tenth ERME Topic Conference (ETC 10) on Mathematics Education in the Digital Age (MEDA) (pp. 483–490). Johannes Kepler University

  • Thomsen, M., & Jankvist, U. T. (2021). Mathematical thinking in the interplay between historical original sources and GeoGebra. In U. T. Jankvist, A. Clark-Wilson, H.-G. Weigand, R. Elicer, & M. Thomsen (Eds.). ICTMT-15 Book of accepted contributions: 15th International Conference on Technology in Mathematics Teaching – Making and Strengthening “Connections and Connectivity” (C&C) for Teaching Mathematics with Technology (pp. 283–291). Danish School of Education

  • Thomsen, M., & Olsen, I. M. (2019). Original sources, ICT and mathemacy. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.). Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME 11) (pp. 2060–2061). Freudenthal Group & Freudenthal Institute, Utrecht University, and ERME

  • Trouche, L. (2004). Managing the complexity of human machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307. https://doi.org/10.1007/s10758-004-3468-5

    Article  Google Scholar 

  • Trouche, L. (2005). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 197–230). Springer

  • van Maanen, J. (1995). Alluvial deposits, conic sections, and improper glasses. In F. Swetz, J. Fauvel, O. Bekken, B. Johansson, & V. Katz (Eds.), Learn from the masters (pp. 73–99). The Mathematical Association of America

  • van Maanen, J. (1997). New maths may profit from old methods. For the Learning of Mathematics, 17(2), 39–46

    Google Scholar 

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101. https://doi.org/10.1007/BF03172796

    Article  Google Scholar 

  • Zengin, Y. (2018). Incorporating the dynamic mathematics software GeoGebra into a history of mathematics course. International Journal of Mathematical Education in Science and Technology, 49(7), 1083–1098. https://doi.org/10.1080/0020739X.2018.1431850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Thomas Jankvist.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomsen, M., Jankvist, U.T. & Clark, K.M. The interplay between history of Mathematics and Digital Technologies: a review. ZDM Mathematics Education (2022). https://doi.org/10.1007/s11858-022-01368-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11858-022-01368-0

Keywords

  • Digital technology
  • History and pedagogy of mathematics
  • Mathematics education theoretical perspectives
  • Primary historical sources