Skip to main content

Advertisement

Log in

The Role of Mathematics in interdisciplinary STEM education

  • Survey Paper
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In times of rapid technological innovation and global challenges, the development of science, technology, engineering and mathematics (STEM) competencies becomes important. They improve the personal scientific literacy of citizens, enhance international economic competitiveness and are an essential foundation for responsible citizenship, including the ethical custodianship of our planet. The latest programme for international student assessment results, however, indicate that even in economically mature countries such as those in Europe, and the USA and Australia, approximately 20% of students lack sufficient skills in mathematics or science. This trend serves to highlight the urgent need for action in relation to STEM education. While it is widely acknowledged that mathematics underpins all other STEM disciplines, there is clear evidence it plays an understated role in integrated STEM education. In this article, we address an element of this concern by examining the role of mathematics within STEM education and how it might be advanced through three interdisciplinary approaches: (1) twenty-first century skills; (2) mathematical modelling; and (3) education for responsible citizenship. At the end of the paper we discuss the potential for research in relation to these three aspects and point to what work needs to be done in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akerson, V. L., Burgess, A., Gerber, A., Guo, M., Khan, T. A., & Newman, S. (2018). Disentangling the meaning of STEM: Implications for science education and science teacher education. Journal of Science Teacher Education, 29(1), 1–8.

    Article  Google Scholar 

  • Applebaum, S., Barker, B., & Pinzino, D. (2006). Socioscientific issues as context for conceptual understanding of content. Paper presented at the National Association for Research in Science Teaching, San Francisco, CA

  • Archer, L., Osborne, J., DeWitt, J.,Dillon. J. Wong, B. & Willis, B. (2013). Aspires—Young people’s science and career aspirations, age 10–14. King’s college, Department of education and professional studies.

  • Ärlebäck, J. B., & Albarracín, L. (2019). The use and potential of Fermi problems in the STEM disciplines to support the development of twenty-first century competencies. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01075-3.

    Article  Google Scholar 

  • Ärlebäck, J. B., & Doerr, H. M. (2018). Students’ interpretations and reasoning about phenomena with negative rates of change throughout a model development sequence. ZDM Mathematics Education, 50(1–2), 187–200.

    Article  Google Scholar 

  • Artigue, M., & Blomhoej, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45(6), 797–810.

    Article  Google Scholar 

  • ATC21S (2009). About the project. Retrieved from http://www.atc21s.org/.

  • Au, W. (2011). Teaching under the new Taylorism: High-stakes testing and the standardization of the 21st century curriculum. Journal of Curriculum Studies, 43(1), 25–45.

    Article  Google Scholar 

  • Australian Council of Learned Academies (ACOLA). (2013). STEM: Country comparisons: International comparisons of science, technology, engineering and mathematics (STEM) education. Final report. Melbourne, Australia: ACOLA.

  • Barak, M., & Assal, M. (2018). Robotics and STEM learning: Students’ achievements in assignments according to the P3 Task Taxonomy—Practice, problem solving, and projects. International Journal of Technology and Design Education, 28(1), 121–144.

    Article  Google Scholar 

  • Baran, E., Bilici, S. C., Mesutoglu, C., & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics, Science and Technology, 4(1), 9–19.

    Article  Google Scholar 

  • Barwell, R. (2013). The mathematical formatting of climate change: Critical mathematics education and post-normal science. Research in Mathematics Education, 15(1), 1–16.

    Article  Google Scholar 

  • Bergsten, C., & Frejd, P. (2019). Preparing pre-service mathematics teachers for STEM education: An analysis of lesson proposals. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01071-7.

    Article  Google Scholar 

  • Beswick, K., & Fraser, S. (2019). Developing mathematics teachers’ 21st century competence for teaching in STEM contexts. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01084-2.

    Article  Google Scholar 

  • Binkley, M., Erstad, O., Heramn, J., Raizen, S., Ripley, M., Miller-Ricci, M., et al. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17–66). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 45–56). New York, NY: Springer.

    Chapter  Google Scholar 

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics—ICTMA 12 (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70, 30–35.

    Google Scholar 

  • California Department of Education. (2014). Science, technology, engineering, & mathematics (STEM) information. Retrieved from http://www.cde.ca.gov/PD/ca/sc/stemintrod.asp.

  • Caprile, M., Palmén, R., Sanz, P., & Dente, G. (2015). Encouraging STEM studies: Labour market situation and comparison of practices targeted at young people in different member states. Brussels, Belgium: European Union. Retrieved October 19, 2019 from http://www.europarl.europa.eu/RegData/etudes/STUD/2015/542199/IPOL_STU(2015)542199_EN.pdf.

  • Compass (2010). Resources. Retrieved from http://www.compass-project.eu/resources.php?ug_preselfl=sdtnvqddt-qgq.

  • D’Ambrosio, U. (1999). Literacy, matheracy, and technoracy: A trivium for today. Mathematical Thinking and Learning, 1(2), 131–153.

    Article  Google Scholar 

  • D’Ambrosio, U. (2003) The role of mathematics in building a democratic society. In B. L. Madison & L. A. Steen (Eds.) Quantitative Literacy: Why numeracy matters for schools and colleges (pp. 235–238). New Jersey: Princeton.

  • Duijzer, C., Van den Heuvel-Panhuizen, M., Veldhuis, M., & Doorman, M. (2019). Supporting primary school students’ reasoning about motion graphs through physical experiences. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01072-6.

    Article  Google Scholar 

  • English, L. D. (2016a). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1–8.

    Google Scholar 

  • English, L. D. (2016b). Advancing mathematics education research within a STEM environment. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K. Fry (Eds.), Research in mathematics education in Australasia 2012–2015 (pp. 353–371). Singapore: Springer.

    Chapter  Google Scholar 

  • English, L. D., & King, D. T. (2015). STEM learning through engineering design: Fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 14.

    Article  Google Scholar 

  • English, L. D., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education, 50(1–2), 103–115.

    Article  Google Scholar 

  • Erdogan, N., Navruz, B., Younes, R., & Capraro, R. M. (2016). Viewing how STEM project-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. EURASIA Journal of Mathematics, Science & Technology Education, 12(8), 2139–2154.

    Google Scholar 

  • Ernest, P. (2002). Empowerment in mathematics education. Philosophy of Mathematics Education Journal, 15(1), 1–16.

    Google Scholar 

  • European Commission. (2013). Reducing early school leaving: Key messages and policy support. Final report of the thematic working group on early school leaving. Retrieved from https://ec.europa.eu/education/content/reducing-early-school-leaving-key-messages-and-policy-support_en.

  • European Commission. (2016). Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions improving and modernizing Education. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2016%3A941%3AFIN.

  • European Commission. (2017). White paper on the future of Europe. Retrieved from https://ec.europa.eu/commission/sites/beta-political/files/white_paper_on_the_future_of_europe_en.pdf.

  • European Commission. (2018a). Council recommendation on key competences for lifelong learning. Retrieved from https://ec.europa.eu/education/education-in-the-eu/council-recommendation-on-key-competences-for-lifelong-learning_en.

  • European Commission. (2018b). ANNEX to the proposal for a council recommendation on key competences for lifelong learning. Retrieved from https://ec.europa.eu/education/sites/education/files/annex-recommendation-key-competences-lifelong-learning.pdf.

  • Eurydice. (2016). Promoting citizenship, common values of freedom, tolerance and non-discrimination through education. Retrieved from https://publications.europa.eu/en/publication-detail/-/publication/ebbab0bb-ef2f-11e5-8529-01aa75ed71a1.

  • Fitzallen, N. (2015). STEM education: What does mathematics have to offer? In M. Marshman (Ed.), Mathematics education in the margins. Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia (pp. 237–244). Sydney: MERGA

  • Forgaz, H., Bleazby, J., & Sawatzki, C. (2015). Ethics and the challenges for inclusive mathematics teaching. In A. Bishop, H. Tan, & T. N. Barkatsas (Eds.), Diversity in mathematics education: Towards inclusive practices (pp. 147–165). Cham: Springer.

    Google Scholar 

  • Frankenstein, M. (2001). Reading the world with math: Goals for a criticalmathematical literacy curriculum (p. 53). Adelaide: Australian Association of Mathematics Teachers Inc.

    Google Scholar 

  • Geiger, V. (2019). Using mathematics as evidence supporting critical reasoning and enquiry in primary science classrooms. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01068-2.

    Article  Google Scholar 

  • Geiger, V., Forgasz, H., & Goos, M. (2015a). A critical orientation to numeracy across the curriculum. ZDM Mathematics Education, 47(4), 611–624.

    Article  Google Scholar 

  • Geiger, V., Goos, M., & Forgasz, H. (2015b). A rich interpretation of numeracy for the 21st century: A survey of the state of the field. ZDM Mathematics Education, 47(4), 531–548.

    Article  Google Scholar 

  • Geiger, V., Stillman, G., Brown, J., Galbraith, P., & Niss, M. (2018). Using mathematics to solve real world problems: The role of Enablers. Mathematics Education Research Journal, 30(1), 7–19.

    Article  Google Scholar 

  • Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49(2), 193–223.

    Article  Google Scholar 

  • Goos, M., Geiger, V., & Dole, S. (2014). Transforming professional practice in numeracy teaching. In Y. Li, E. Silver, & S. Li (Eds.), Transforming mathematics instruction: Multiple approaches and practices (pp. 81–102). New York: Springer.

    Google Scholar 

  • Gordon, J., Halsz, G., Krawczyk, M., Leney, T., Michel, A., Pepper, D., Putkiewicz, E., & Wisniewski, W. (2009). Key competences in Europe. Opening doors for lifelong learners across the school curriculum and teacher education (Warsaw, Center for Social and Economic Research on behalf of CASE Network). https://ec.europa.eu/epale/en/resource-centre/content/key-competences-europe-opening-doors-lifelong-learners-across-school Retrieved August 1, 2017.

  • Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 137–144). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Gravemeijer, K., Stephan, M., Julie, C., Lin, F. L., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? International Journal of Science and Mathematics Education, 15(1), 105–123.

    Article  Google Scholar 

  • Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19, 3–45.

    Article  Google Scholar 

  • Guzey, S. S., Moore, T. J., & Harwell, M. (2016a). Building up STEM: An analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research, 6(1), 11–29.

    Article  Google Scholar 

  • Guzey, S. S., Moore, T. J., Harwell, M., & Moreno, M. (2016b). STEM integration in middle school life science: Student learning and attitudes. Journal of Science Education and Technology, 25(4), 550–560.

    Article  Google Scholar 

  • Habermas, J. (1972). Knowledge and human interests (I. J. Shapiro, Trans.). London: Heinemann.

  • Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinou, C., Deca, L., Grangeat, M., et al. (2015). Science education for responsible citizenship: Report to the European commission of the expert group on science education. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • Herman, B. Sadler, T., Zeidler, D. & Newton, M. (2018). A socioscientific issues approach to environmental education. In G. Reis, & J. Scott (Eds.), International perspectives on the theory and practice of environmental education: A reader (pp. 145–161). https://doi.org/10.1007/978-3-319-67732-3_11.

  • Honey, M., Pearson, G., & Schweingruber, H. (Eds.). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: National Academies Press.

    Google Scholar 

  • Jablonka, E. (2003). Mathematical literacy. In A. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. S. K. Leung (Eds.), Second international handbook of mathematics education (pp. 75–102). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Jablonka, E. (2015). The evolvement of numeracy and mathematical literacy curricula and the construction of hierarchies of numerate or mathematically literate subjects. ZDM Mathematics Education, 47(4), 599–609.

    Article  Google Scholar 

  • Kaiser, G. (1995). Realitätsbezüge im Mathematikunterricht—Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, T. Jahnke, G. Kaiser, & J. Meyer (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht Bad Salzdetfurth ü (Vol. 2, pp. 66–84). Franzbecker: Hildesheim.

    Google Scholar 

  • Kaiser, G., Blum, W., Ferri, R. B., & Stillman, G. (Eds.). (2011). Trends in teaching and learning of mathematical modelling: ICTMA14. Dordrecht: Springer.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310.

    Article  Google Scholar 

  • Kapa, E. (2001). A metacognitive support during the process of problem-solving in a computerised environment. Educational Studies in Mathematics, 47, 317–336.

    Article  Google Scholar 

  • Maass, K. (2004). Mathematisches modellieren im unterricht—Ergebnisse einer empirischen studie. Journal für Mathematik-Didaktik, 25(2), 175–176.

    Article  Google Scholar 

  • Maass, K. (2006). What are modelling competencies? ZDM Mathematics Education, 38(2), 113–142.

    Article  Google Scholar 

  • Maass, K. (2007). Modelling in class: What do we want students to learn. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling—Education, engineering and economics (pp. 63–78). Chichester: Horwood.

    Chapter  Google Scholar 

  • Maass, K., Doorman, M., Jonker, V., & Wijers, M. (2019). Promoting active ciztenship in mathematics teaching. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01048-6.

    Article  Google Scholar 

  • Maass, K., & Engeln, K. (2019). Professional development on connections to the world of work in mathematics and science education. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01047-7.

    Article  Google Scholar 

  • Marginson, S., Tytler, R., Freeman, B., & Roberts, K. (2013). STEM: Country comparisons. Melbourne: Australian Council of Learned Academies.

    Google Scholar 

  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822.

    Article  Google Scholar 

  • Mascil. (2013). Classroom materials. Retrieved from http://www.fisme.science.uu.nl/publicaties/subsets/mascil/.

  • McConney, A., Oliver, M. C., Woods-McConney, A., Schibeci, R., & Maor, D. (2014). Inquiry, engagement, and literacy in science: A retrospective, cross-national analysis using PISA 2006. Science Education, 98(6), 963–980.

    Article  Google Scholar 

  • Mildenhall, P., Cowie, B., & Sherriff, B. (2019). A STEM extended learning project to raise awareness of social justice in a year 3 primary classroom. International Journal of Science Education, 41(4), 471–489.

    Article  Google Scholar 

  • Miller, J. (2019). STEM Education in the primary years to support mathematical thinking: Using coding to identify mathematical structures and patterns. ZDM Mathematics Education, 51(6), this issue.

  • Ministerium für Jugend, Kultus und Sport, Baden-Württemberg (2016). Gemeinsamer Bildungsplan für die Sekundarstufe I, Bildungsplan 2016, Mathematik. Retrieved from http://www.bildungsplaene-bw.de/site/bildungsplan/get/documents/lsbw/export-pdf/depot-pdf/ALLG/BP2016BW_ALLG_SEK1_M.pdf.

  • Mischo, C., & Maass, K. (2013). The effect of teacher beliefs on student competence in mathematical modeling—An intervention study. Journal of Education and Training Studies, 1(1), 19–38.

    Article  Google Scholar 

  • National Academy of Sciences. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press.

    Google Scholar 

  • National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165.

    Book  Google Scholar 

  • National Science Teaching Association (NSTA). (2011). Quality science education and 21st-century skills: Position statement. Retrieved from https://www.nsta.org/about/positions/21stcentury.aspx.

  • Nicol, C., Bragg, L. A., Radzimski, V., et al. (2019). Learning to teach the M in/for STEM for social justice. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01065-5.

    Article  Google Scholar 

  • Nikitina, S. (2006). Three strategies for interdisciplinary teaching: Contextualizing, conceptualizing, and problem centring. Journal of Curriculum Studies, 38, 251–271.

    Article  Google Scholar 

  • Niss, M. (2018). National and international curricular use of the competency-based Danish “KOM project”. In Y. Shimizu & R. Vithal (Eds.), ICMI Study 24 Conference Proceedings (pp. 69–76). Tsukuba: University of Tsukuba & ICMI.

    Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York: Springer.

    Chapter  Google Scholar 

  • Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 1–20.

    Article  Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD). (2005). Promoting adult learning. Retrieved from http://www.oecd.org/education/innovation-education/35268366.pdf.

  • Organisation for Economic Cooperation and Development (OECD). (2016). PISA 2015 results (volume I): Excellence and equity in education. Paris: OECD Publishing.

    Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD). (2018). PISA 2021 mathematics framework (Second draft). Paris: Author. Retrieved from http://www.oecd.org/pisa/publications/.

  • Owen, R., MacNaghten, P., & Stilgoe, J. (2009). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39, 751–760.

    Article  Google Scholar 

  • Partnership for 21st Century Skills. (2002). Learning for the 21st century: A report and mile guide for 21st century skills. Retrieved October 19, 2019 from https://files.eric.ed.gov/fulltext/ED480035.pdf.

  • Pearson, G. (2017). National academies piece on integrated STEM. The Journal of Educational Research, 110(3), 224–226.

    Article  Google Scholar 

  • Radakovic, N. (2015). “People can go against the government”: Risk-based decision making and high school students’ concepts of society. Canadian Journal of Science, Mathematics and Technology Education, 15(3), 276–288. https://doi.org/10.1080/14926156.2015.1062938.

    Article  Google Scholar 

  • Ratcliffe, M., & Grace, M. (2003). Science education for citizenship. Milton Keynes: Open University Press.

    Google Scholar 

  • Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. https://doi.org/10.1007/s11165-006-9030-9.

    Article  Google Scholar 

  • Satchwell, R. E., & Loepp, F. L. (2002). Designing and implementing an integrated mathematics, science, and technology curriculum for the middle school. Journal of Industrial Teacher Education, 39(3), 41–66.

    Google Scholar 

  • Sawatzki, C. (2013). What financial dilemmas reveal about students’ social and mathematical understandings. In V. Steinle, L. Ball, & C. Bardini (Eds.), Mathematics education: Yesterday, today and tomorrow. Proceedings of the 36th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 602–609). Australia: Mathematics Education Research Group of Australasia.

  • Schleicher, A. (Ed.). (2012). Preparing teachers and developing school leaders for the 21st century: Lessons from around the world. Paris: OECD Publishing. https://doi.org/10.1787/9789264174559-en.

    Book  Google Scholar 

  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM Mathematics Education, 42(2), 149–161.

    Article  Google Scholar 

  • Schukajlow, S., Kaiser, G., & Stillman, G. (2018). Empirical research on teaching and learning of mathematical modelling: A survey on the current state-of-the-art. ZDM Mathematics Education, 50(1–2), 5–18.

    Article  Google Scholar 

  • Sevian, H., Dori, Y. J., & Parchmann, I. (2018). How does STEM context-based learning work: What we know and what we still do not know. International Journal of Science Education, 40(10), 1095–1107.

    Article  Google Scholar 

  • Shahali, E. H. M., Halim, L., Rasul, M. S., Osman, K., & Zulkifeli, M. A. (2017). STEM learning through engineering design: Impact on middle secondary students’ interest towards STEM. Eurasia Journal of Mathematics, Science and Technology Education, 13(5), 1189–1211.

    Article  Google Scholar 

  • Shaughnessy, M. (2013). By way of introduction: Mathematics in a STEM context. Mathematics Teaching g in the Middle school, 18(6), 324.

    Article  Google Scholar 

  • Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht: Kluwer Academic Publisher.

    Book  Google Scholar 

  • Skovsmose, O., & Nielsen, L. (1996). Critical mathematics education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 1257–1288). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Steele, A. (2016). Troubling STEM: Making a case for an ethics/STEM partnership. Journal of Science Teacher Education, 27(4), 357–371.

    Article  Google Scholar 

  • Steele, A., Brew, C. R., & Beatty, B. R. (2012). The tower builders: A consideration of STEM, STSE and ethics in science education. Australian Journal of Teacher Education, 37(10), 118.

    Article  Google Scholar 

  • Steen, L. (2001). The case for quantitative literacy. In L. Steen (Ed.), Mathematics and democracy: The case for quantitative literacy (pp. 1–22). National Council on Education and the Disciplines: Princeton.

    Google Scholar 

  • STEM Alliance. (2017). STEM education fact sheets. Retrieved from http://www.stemalliance.eu/publications.

  • Stillman, G. A., Blum, W., & Kaiser, G. (Eds.). (2017). Mathematical modelling and applications: Crossing and researching boundaries in mathematics education. Cham: Springer.

    Google Scholar 

  • Stillman, G., Brown, J., Faragher, R., Geiger, V., & Galbraith, P. (2013). The role of textbooks in developing a socio-critical perspective on mathematical modelling in secondary classrooms. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 361–371). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational studies in mathematics, 36(2), 157–194.

    Article  Google Scholar 

  • Stump, S. L., Bryan, J. A., & McConnell, T. J. (2016). Making STEM connections. Mathematics Teacher, 109(8), 576–583.

    Article  Google Scholar 

  • Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., et al. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2.

    Article  Google Scholar 

  • Toma, R. B., & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383–1395.

    Article  Google Scholar 

  • Tout, D., Coben, D., Geiger, V., Ginsburg, L., Hoogland, K., Maguire, T., Thomson, S., & Turner, R. (2017). Review of the PIAAC numeracy assessment framework: Final report. Camberwell, Australia: Australian Council for Educational Research (ACER).

  • UNESCO. (2005). Scientism: A weed well fertilized in the garden of science education? In Connect: UNESCO international science, technology and environmental education newsletter (Vol. 30, no. 3–4, pp. 2–5.

  • van der Wal, N. J., Bakker, A. & Drijvers, P. (2019). Teaching strategies to foster techno-mathematical literacies in an innovative mathematics course for future engineers. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01095-z.

    Article  Google Scholar 

  • Venville, G. J., Wallace, J., Rennie, L. J., & Malone, J. A. (2002). Curriculum integration: Eroding the high ground of science as a school subject? Studies in Science Education, 37, 43–84.

    Article  Google Scholar 

  • Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299–321.

    Article  Google Scholar 

  • Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumptions. ZDM Mathematics Education, 50(1–2), 343–354. https://doi.org/10.1007/s11858-017-0909-x.

    Article  Google Scholar 

  • Walker, K. A. (2003). Students’ understanding of the nature of science and their reasoning on socioscientific issues: A web-based learning inquiry. Unpublished dissertation. Tampa, FL: University of South Florida.

  • Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49.

    Article  Google Scholar 

  • Zevenbergen, R. (1995). Towards a socially critical numeracy. Critical Forum, 4(1), 82–102.

    Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12–19.

    Article  Google Scholar 

  • Zouda, M. (2018). Issues of power and control in STEM education: A reading through the postmodern condition. Cultural Studies of Science Education, 13(4), 1109–1128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Maass.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maass, K., Geiger, V., Ariza, M.R. et al. The Role of Mathematics in interdisciplinary STEM education. ZDM Mathematics Education 51, 869–884 (2019). https://doi.org/10.1007/s11858-019-01100-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-019-01100-5

Keywords

Navigation