Skip to main content
Log in

Making connections among representations of eigenvector: what sort of a beast is it?

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Many studies provide insights into students’ conceptions of various linear algebra topics and difficulties they face with multiple modes of thinking needed for conceptualization. While it is important to understand students’ initial conceptions, students’ transfer of learning of these conceptions to subsequent courses can provide additional information to structure meaningful curricular materials. This study explores physics students’ transfer of learning of eigenvalues and eigenvectors from prerequisite experiences to quantum mechanics. Data analysis focused on three task-based interviews with undergraduate students, observations of physics courses, and students’ course artifacts. Existing studies on students’ conceptions of linear algebra topics indicate the necessity of developing flexible shifts between different modes of thinking in order to grasp linear algebra. This study’s participants, who had initial learning experiences of linear algebra, were also observed to struggle with such shifts prior to quantum courses. It seems that various contexts in quantum courses, and explicit instructional methods, provided opportunities for students to enhance this initial learning of eigenvalues and eigenvectors. In particular, the explicit reasoning of one of the quantum courses’ instructors concerning the choice of certain representations during problem solving in class, seemed to facilitate students’ construction of similarities, thus providing evidence for actor-oriented transfer. Results of this study align with goals for recently developed instructional materials and interventions that emphasize opportunities for students to inquire and connect multiple modes of thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Auerbach, C., & Silverstein, L. B. (2003). Qualitative data: An introduction to coding and analysis. New York: NYU Press.

    Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). Learning and transfer. In J. D. Bransford, A. L. Brown, & R. R. Cocking (Eds.), How people learn: Brain, mind experience, and school (pp. 51–78). Washington, DC: National Academy Press.

    Google Scholar 

  • Conference Board of the Mathematical Sciences (CBMS) (2016). Active learning in post-secondary education. http://www.cbmsweb.org/Statements/Active_Learning_Statement.pdf. Accessed 3 Mar 2019.

  • Dorier, J.-L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 255–273). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Karakok, G. (2009). Studentstransfer of learning of eigenvalues and eigenvectors: Implementation of Actor-Oriented Transfer framework. Doctoral dissertation, Oregon State University, 2009, Corvallis, OR.

  • Larson, C., & Zandieh, M. (2013). Three interpretations of the matrix equation Ax = b. For the Learning of Mathematics,33(2), 11–17.

    Google Scholar 

  • Lester, S. (1999). An introduction to phenomenological research. Taunton: Stan Lester Developments.

    Google Scholar 

  • Lobato, J. (2003). How design experiments can inform rethinking of transfer and vice versa. Educational Researcher,32(1), 17–20.

    Article  Google Scholar 

  • Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. Journal of Mathematical Behavior,21, 87–116.

    Article  Google Scholar 

  • Mestre, J. (2003). Transfer of learning: Issues and research agenda. http://www.nsf.gov/pubs/2003/nsf03212/. Accessed 2 Nov 2005.

  • Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 209–246). Dordrecht: Springer.

    Google Scholar 

  • Stewart, S., Andrews-Larson, C., Berman, A., & Zandieh, M. (Eds.). (2018). Challenges and strategies in teaching linear algebra. https://doi.org/10.1007/978-3-319-66811-6.

    Google Scholar 

  • Stewart, S., & Thomas, M. (2009). A framework for mathematical thinking: the case of linear algebra. International Journal of Mathematical Education in Science and Technology,40(7), 951–961.

    Article  Google Scholar 

  • Stewart, S., & Thomas, M. O. J. (2010). Student learning of basis, span and linear independence in linear algebra. International Journal of Mathematical Education in Science and Technology,41(2), 173–188.

    Article  Google Scholar 

  • Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: Embodied, symbolic and formal thinking. Mathematics Education Research Journal,23, 275–296.

    Article  Google Scholar 

  • Thompson, C. A., Stewart, S., & Mason, B. (2016). Physics: Bridging the embodied and symbolic worlds of mathematical thinking. In T. Fukawa-Connolly, N. Engelke Infante, M. Wawro & S. Brown (Eds.), Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1340–1347). Pittsburgh, Pennsylvania.

  • Wawro, M., Watson, K., & Christensen, W. (2017). Meta-representational competence with linear algebra in quantum mechanics. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceedings of the 20th Annual Conference on Research in Undergraduate Mathematics Education (pp. 326–337), San Diego, CA.

  • Wawro, M., Zandieh, M., Sweeney, G., Larson, C., & Rasmussen, C. (2011). Using the emergent model heuristic to describe the evolution of student reasoning regarding span and linear independence. In Paper presented at the 14th Annual Conference on Research in Undergraduate Mathematics Education, Portland, OR.

  • Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear algebra: The roles of symbolizing and brokering. PRIMUS,27(1), 96–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulden Karakok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakok, G. Making connections among representations of eigenvector: what sort of a beast is it?. ZDM Mathematics Education 51, 1141–1152 (2019). https://doi.org/10.1007/s11858-019-01061-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-019-01061-9

Keywords

Navigation