, Volume 51, Issue 5, pp 759–777 | Cite as

Intuition and proof in the solution of conjecturing problems’

  • Maria Alessandra Mariotti
  • Bettina PedemonteEmail author
Original Article


The cognitive relationship between intuition and proof is complex and often students struggle when they need to find mathematical justifications to explain what appears as self-evident. In this paper, we address this complexity in the specific case of open geometrical problems that ask for a conjecture and its proof. We analyze four meaningful cases that, though not exhaustive with respect to all possibilities, can highlight different aspects of the possible tensions between intuition and proof. The main aim of this paper is to show that when a conjecture is constructed based on intuition or perceptive evidence, the proving process can involve a cognitive gap, sometimes difficult for the students to cope with. Research concerning cognitive unity shows that proof is more accessible to students when an argumentation is constructed to justify a conjecture. A proof can be constructed connecting the statements previously used in the argumentation, into a logical chain. However, if the conjecture is based on an intuition or perceptive evidence, cognitive unity cannot be fully realized, and difficulties arise.


Intuition Perceptive fact Perceptive evidence Conjecture Proof Cognitive Unity Structurant argumentation Constructive argumentation 



  1. Alcock, L., & Simpson, A. (2004). Convergence of sequences and series: interactions between visual reasoning and the learner’s beliefs about their own role. Educational Studies in Mathematics, 57(1), 1–32.CrossRefGoogle Scholar
  2. Arsac, G., Germain, G., & Mante, M. (1991). Problème ouvert et situation-problème. Lyon: IREM.Google Scholar
  3. Balacheff, N. (2010). Bridging knowing and proving in mathematics. An essay from a didactical perspective. In G. Hanna, H. N. Jahnke, H. Pulte (Eds.), Explanation and proof in mathematics (pp. 115–135). Heidelberg: Springer.Google Scholar
  4. Balacheff, N. (2013). CK¢, a model to reason on learners’ conceptions. In M. Martinez, & A. Castro Superfine (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Chicago, IL: University of Illinois at Chicago.Google Scholar
  5. Boero, P., Garuti, R., Mariotti M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig, & A. Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education PME-XX (Vol. 2, pp. 121–128). Valencia.Google Scholar
  6. Bruner, J. S. (1977). The process of education. Cambridge: Harvard UP.Google Scholar
  7. Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics, 3(2), 9–24.Google Scholar
  8. Fischbein, E. (1987). Intuition in science and mathematics. An educational approach. Dordrecht: D. Reidel.Google Scholar
  9. Garuti, R., Boero, P., Lemut, E. (1998). Cognitive unity of theorems and difficulty of proof. In Proceedings of the International Group for the Psychology of Mathematics Education PME-XXII (Vol. 2, pp. 345–352). Stellenbosch.Google Scholar
  10. Hanna, G. (1989). Proofs that prove and proofs that explain. In G. Vergnaud, J. Rogalski, M. Artigue (Eds.), Proceedings of the International Group for the 13th Psychology of Mathematics Education PME-XIII (Vol. 2, pp. 45–51). Paris.Google Scholar
  11. Hanna, G., & Barbeu, E. (2008). Proof as bearers of Mathematical knowledge. ZDM Mathematics Education, 40, 345–353.CrossRefGoogle Scholar
  12. Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: the importance of qualification. Educational Studies in Mathematics, 66, 3–21.CrossRefGoogle Scholar
  13. Jones, K. (2000). Providing a foundation for deductive reasoning: students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44(1–2), 55–85.CrossRefGoogle Scholar
  14. Knipping, C. (2008). A method for revealing structures of argumentation in classroom proving processes. ZDM—The International Journal on Mathematics Education, 40(3), 427–441.CrossRefGoogle Scholar
  15. Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–82.CrossRefGoogle Scholar
  16. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Lavy, I. (2006). A case study of different types of arguments emerging from explorations in an interactive computerized environment. The Journal of Mathematical Behavior, 25, 153–169.CrossRefGoogle Scholar
  18. Mariotti, M. A. (2001). Introduction to proof: the mediation of a dynamic software environment [Special issue]. Educational Studies in Mathematics, 44(1 & 2), 25–53.Google Scholar
  19. Mariotti, M. A. (2002). La preuve en mathématique. ZDM, 34(4), 132–145.Google Scholar
  20. Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In TransformationA fundamental idea of mathematics education (pp. 155–172). New York, NY: Springer. ISBN 978-1-4614-3489-4.Google Scholar
  21. Mariotti, M. A., Bartolini Bussi M. G., Boero, P., Ferri, F., & Garuti, M. R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In Proceedings of the International Group for the 21st Psychology of Mathematics Education PME-XXI, (pp. 180–195). Lahti, Finland.Google Scholar
  22. Nardi, E., Biza, I., & Zachariades, T. (2012). “Warrant” revisited: integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation. Educational Studies in Mathematics, 79, 157–173.CrossRefGoogle Scholar
  23. Garuti, R., Boero, P., Lemut, E. & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems. In Proceedings of the International Group for the Psychology of Mathematics Education PME-XX (Vol. 2, pp. 113–120). Valencia.Google Scholar
  24. Pedemonte, B. (2002). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration dans l’apprentissage des mathématiques. Thèse de doctorat: Université Joseph Fourier, Grenoble I.Google Scholar
  25. Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et demonstration. Recherche en Didactique des Mathématiques, 25(3), 313–348.Google Scholar
  26. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.CrossRefGoogle Scholar
  27. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDMThe International Journal on Mathematics Education, 40(3), 385–400.Google Scholar
  28. Pedemonte, B., & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model. The Journal of Mathematical Behavior, 41, 104–122.CrossRefGoogle Scholar
  29. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.CrossRefGoogle Scholar
  30. Sandefur, J., Mason, J., Stylianides, G. J., & Watson, A. (2013). Generating and using examples in the proving process. Educational Studies in Mathematics, 83(3), 323–340.CrossRefGoogle Scholar
  31. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.CrossRefGoogle Scholar
  32. Toulmin, S. E. (2003). The uses of argument (updated edition of the 1958 book). Cambridge: Cambridge University Press.Google Scholar
  33. Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proof. For the Learning of Mathematics, 25(1), 34–38.Google Scholar
  34. Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171–191.CrossRefGoogle Scholar
  35. Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the 25th Psychology of Mathematics Education PME-25 (Vol. 4, pp. 33–40). Utrecht, Olanda.Google Scholar
  36. Yackel, E., & Rasmussen, C. (2002). Beliefs and norms in the mathematics classroom. In G. Leder, E. Pehkonen, & G. Toerner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 313–330). Dordrecht: Kluwer.Google Scholar
  37. Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2016). Bridging the gap between graphical arguments and verbal-symbolic proofs in a real analysis context. Educational Studies in Mathematics, 93(2), 155–173.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2019

Authors and Affiliations

  1. 1.Università di SienaSienaItaly
  2. 2.UCSFSan FranciscoUSA

Personalised recommendations