# Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context

We’re sorry, something doesn't seem to be working properly.

## Abstract

Elements of statistical modeling can be implemented already in primary school. A prerequisite for this approach is that teachers are well-educated in this domain. Content knowledge, pedagogical content knowledge and (pedagogical) content related technological knowledge are core components of teacher education. We designed a course for elementary preservice teachers with regard to developing statistical thinking including the mentioned knowledge facets. The course includes exploring data and modeling and simulating chance experiments with TinkerPlots. We use the ‘data factory metaphor’ in fictive contexts and in contexts stemming from civic statistics for supporting the idea of modeling. We interviewed four participants of the course to assess and analyze their reasoning. We analyze how they model a given civic statistics contextual problem using the TinkerPlots sampler and how they evaluate their model with regard to a civic statistics context (the situation of hospitals in Germany).

This is a preview of subscription content, access via your institution.

## References

1. Ainley, J., & Pratt, D. (2017). Computational modelling and children’s expressions of signal and noise. Statistics Education Research Journal, 16(2), 15–37.

2. Arbeitskreis Stochastik der Gesellschaft für Didaktik der Mathematik. (2012). Empfehlungen für die Stochastikausbildung von Lehrkräften an Grundschulen. Retrieved from http://www.mathematik.uni-dortmund.de/ak-stoch/Empfehlungen_Stochastik_Grundschule.pdf.

3. Aridor, K., & Ben-Zvi, D. (2017). The co-emergence of aggregate and modelling reasoning. Statistics Education Research Journal, 16(2), 38–63.

4. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching what makes it special? Journal of Teacher Education, 59(5), 389–407.

5. Biehler, R., Frischemeier, D., & Podworny, S. (2015). Preservice teachers’ reasoning about uncertainty in the context of randomization tests. In A. S. Zieffler & E. Fry (Eds.), Reasoning about uncertainty: Learning and teaching informal inferential reasoning (pp. 129–162). Minnesota: Catalyst Press.

6. Biehler, R., Frischemeier, D., & Podworny, S. (2017a). Design, realization and evaluation of a university course for preservice teachers on developing statistical reasoning and literacy with a focus on civic statistics. Paper presented at the World Statistics Congress 61, Marrakech, Morocco.

7. Biehler, R., Frischemeier, D., & Podworny, S. (2017b). Elementary preservice teachers’ reasoning about modeling a “family factory” with TinkerPlots—A pilot study. Statistics Education Research Journal, 16(2), 244–286.

8. Biehler, R., Frischemeier, D., & Podworny, S. (2018). Civic engagement in higher education: A university course in civic statistics for mathematics preservice teachers. Zeitschrift für Hochschulentwicklung, 13(2), 169–182.

9. Cobb, G. W. (2007). The Introductory Statistics course: A Ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1), 1–15.

10. Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

11. Deutsche Mathematiker Vereinigung-Gesellschaft für Didaktik der Mathematik-Deutscher Verein zur Förderung des mathematischen und naturwissenschaftlichen Unterrichts. (2008). Standards für die Lehrerbildung im Fach Mathematik. Retrieved from http://madipedia.de/images/2/21/Standards_Lehrerbildung_Mathematik.pdf.

12. Engel, J. (2017). Statistical literacy for active citizenship: A call for data science education. Statistics Education Research Journal, 16(1), 44–49.

13. Engel, J., Gal, I., & Ridgway, J. (2016). Mathematical literacy and citizen engagement: The role of civic statistics. Paper presented at the 13th International Congress on Mathematical Education, Hamburg.

14. Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2), 124–158.

15. Hasemann, K., & Mirwald, E. (2012). Daten, Häufigkeit und Wahrscheinlichkeit. In G. Walther, M. van den Heuvel-Panhuizen, D. Granzer & O. Köller (Eds.), Bildungsstandards für die Grundschule: Mathematik konkret (pp. 141–161). Berlin: Cornelsen Scriptor.

16. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39, 372–400.

17. Jungwirth, H. (2003). Interpretative Forschung in der Mathematikdidaktik—ein Überblick für Irrgäste, Teilzieher und Standvögel. ZDM Mathematics Education, 35(5), 189–200.

18. Klein, F. (2016). Elementary mathematics from a higher standpoint: Arithmetic, algebra, analysis (Vol (1) [new English translation of the 1933 published 4th edition of the original German version]). Berlin: Springer.

19. Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning, 12(3), 217–230.

20. Konold, C., & Miller, C. (2011). TinkerPlots 2.0. Emeryville: Key Curriculum Press.

21. Krummheuer, G., & Naujok, N. (1999). Grundlagen und Beispiele Interpretativer Unterrichtsforschung. Opladen: Leske + Budrich.

22. Langrall, C., Nisbet, S., Mooney, E., & Jansem, S. (2011). The role of context expertise when comparing data. Mathematical Thinking and Learning, 13(1), 47–67.

23. Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82–105.

24. Makar, K., & Rubin, A. (2018). Learning about statistical inference. In D. Ben-Zvi, K. Makar & J. Garfield (Eds.), International handbook of research in statistics education (pp. 261–294). Cham: Springer.

25. Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017–1054.

26. Pfannkuch, M., & Ben-Zvi, D. (2011). Developing teachers’ statistical thinking. In C. Batanero, G. Burrill & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education (pp. 323–333). Dordrecht/Heidelberg/London/New York: Springer.

27. Podworny, S., Frischemeier, D., & Biehler, R. (2017). Design, Realization and Evaluation of a statistics course for preservice teachers for primary school in Germany. In A. Molnar (Ed.), IASE Satellite Conference 2017: Teaching Statistics in a Data Rich World. Rabat, Morocco: IASE.

28. Pratt, D., & Kazak, S. (2018). Research on uncertainty. In D. Ben-Zvi, K. Makar & J. Garfield (Eds.), International handbook of research in statistics education (pp. 193–228). Cham: Springer.

29. Ridgway, J. (2016). Implications of the data revolution for statistics education. International Statistical Review, 84(3), 528–549. https://doi.org/10.1111/insr.12110.

30. Rossman, A., Chance, B., Cobb, G. W., & Holcomb, R. (2008). Concepts of statistical inference: Approach, scope, sequence and format for an elementary permutation-based first course. http://statweb.calpoly.edu/bchance/csi/CSIcurriculumMay08.doc.

31. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

32. Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x.

## Acknowledgements

Many thanks go to Cliff Konold for proofreading and for providing very helpful comments on previous versions of this paper. We also thank the three anonymous reviewers for providing constructive feedback and helpful suggestions for revising the paper.

## Author information

Authors

### Corresponding author

Correspondence to Rolf Biehler.

## Rights and permissions

Reprints and Permissions

Biehler, R., Frischemeier, D. & Podworny, S. Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context. ZDM Mathematics Education 50, 1237–1251 (2018). https://doi.org/10.1007/s11858-018-1001-x