Skip to main content

Innovations in statistical modeling to connect data, chance and context

Abstract

Statistical modeling is emerging as a fertile research environment in which to promote and learn about student statistical reasoning processes. We outline a paradigm shift toward a modeling perspective that is occurring in statistics education research and how statistical modeling processes involve connecting data, chance and context. The innovative task and software designs and theoretical frameworks that are under development for explicating student reasoning and pedagogy are discussed. In conclusion, we reflect on statistics education research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abelson, R. (1995). Statistics as principled argument. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Abrahamson, D. (2014). Rethinking probability education: Perceptual judgment as epistemic resource. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 239–260). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ainley, J., Aridor, K., Ben-Zvi, D., Manor, H., & Pratt, D. (2013). Children’s expressions of uncertainty in statistical modelling. In J. Garfield (Ed.), Proceedings of the eighth international research forum on statistical reasoning, thinking, and literacy (SRTL8) (pp. 49–59). Minneapolis: University of Minnesota.

    Google Scholar 

  • Ainley, J., & Pratt, D. (2017). Computational modeling and children’s expressions of noise and signal. Statistics Education Research Journal, 16(2), 15–37.

    Google Scholar 

  • Aridor, K., & Ben-Zvi, D. (2017). The co-emergence of aggregate and modeling reasoning. Statistics Education Research Journal, 16(2), 38–63.

    Google Scholar 

  • Aridor, K., & Ben-Zvi, D. (2018). Statistical modeling to promote students’ aggregate reasoning with sample and sampling. ZDM Mathematics Education (this issue).

  • Beckman, M., & delMas, R. (2018). Students’ emergent understanding of statistical modeling through parametric inference. ZDM Mathematics Education (this issue).

  • Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articulations of uncertainty while making informal statistical inferences. ZDM - The International Journal on Mathematics Education, 44(7), 913–925.

    Article  Google Scholar 

  • Ben-Zvi, D., & Garfield, J. (Eds.). (2004). The challenge of developing statistical literacy, reasoning and thinking. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Ben-Zvi, D., Gravemeijer, K., & Ainley, J. (2018). Design of statistics learning environments. In D. Ben-Zvi, K. Makar & J. Garfield (Eds.), International handbook of research in statistics education (pp. 473–502). New York: Springer.

    Chapter  Google Scholar 

  • Biehler, R., Frischemeier, D., & Podworny, S. (2017a). Reasoning about models and modeling in the context of informal statistical inference. Statistics Education Research Journal, 16(2), 8–12.

    Google Scholar 

  • Biehler, R., Frischemeier, D., & Podworny, S. (2017b). Elementary preservice teachers’ reasoning about modeling a “family factory” with TinkerPlots—a pilot study. Statistics Education Research Journal, 16(2), 244–286.

    Google Scholar 

  • Biehler, R., Frischemeier, D., & Podworny, S. (2018). Elementary preservice teachers’ reasoning about setting up models in civic statistics contexts. ZDM Mathematics Education (this issue).

  • Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2007). Modeling and applications in mathematics education: The 14th ICMI Study. New York: Springer Science + Business Media, LLC.

    Google Scholar 

  • Budgett, S., & Fergusson, A. (2017). Modelling and linking the Poisson and exponential distributions in the real world and in the model world. In Proceedings of the 10th statistical reasoning, thinking and literacy forum, Rotorua, New Zealand (pp. 118–134). Auckland, SRTL.

  • Budgett, S., & Pfannkuch, M. (2018). Modelling and linking the Poisson and exponential distributions. ZDM Mathematics Education (this issue).

  • Büscher, C., & Schnell, S. (2017). Students’ emergent modeling of statistical measures—a case study. Statistics Education Research Journal, 16(2), 144–162.

    Google Scholar 

  • Cobb, G. (2007). The introductory statistics course: A ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1), 1–16.

    Google Scholar 

  • Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. The American Mathematical Monthly, 104(9), 801–823.

    Article  Google Scholar 

  • Doerr, H., delMas, R., & Makar, K. (2017). A modeling approach to the development of students’ informal inferential reasoning. Statistics Education Research Journal, 16(2), 86–115.

    Google Scholar 

  • Doerr, H., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: A research synthesis (pp. 259–286). Charlotte: Information Age Publishing.

    Google Scholar 

  • Dvir, M., & Ben-Zvi, D. (2018). The role of model comparison in young learners’ reasoning with statistical models and modeling. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0987-4.

    Article  Google Scholar 

  • Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 75–99). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Fielding-Wells, J. (2018). Dot plots and hat plots: Supporting young students emerging understandings of distribution, center and variability through modeling. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0961-1.

    Article  Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2008). Learning to reason about statistical models and modeling. In J. Garfield & D. Ben-Zvi (Eds.), Developing students’ statistical reasoning: Connecting research and teaching practice (pp. 143–163). New York: Springer.

    Chapter  Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2015). Foreword. In A. Zieffler & E. Fry (Eds.), Reasoning about uncertainty: Learning and teaching informal inferential reasoning (pp. xv–xviii). Minneapolis: Catalyst Press.

    Google Scholar 

  • Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinking in an introductory, tertiary-level statistics course. ZDM - The International Journal on Mathematics Education, 44(7), 883–898.

    Article  Google Scholar 

  • Gil, E., & Gibbs, A. (2017). Promoting modeling and covariational reasoning among secondary school students in the context of big data. Statistics Education Research Journal, 16(2), 163–190.

    Google Scholar 

  • Gould, R., Bargagliotti, A., & Johnson, T. (2017). An analysis of secondary teachers’ reasoning with participatory sensing data. Statistics Education Research Journal, 16(2), 305–334.

    Google Scholar 

  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

    Article  Google Scholar 

  • Justice, N., Zieffler, A., Huberty, M., & delMas, R. (2018). Narration, comparison, and variation: Secondary teachers’ reasoning about statistical models. ZDM Mathematics Education (this issue).

  • Kaiser, G., Blum, W., & Ferri, B., R., & Stillman, G. (Eds.). (2011). Trends in teaching and learning of mathematical modelling: ICTMA 14. New York: Springer.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(3), 302–310.

    Article  Google Scholar 

  • Kazak, S., & Pratt, D. (2017). Pre-service mathematics teachers’ use of probability models in making informal inferences about a chance game. Statistics Education Research Journal, 16(2), 287–304.

    Google Scholar 

  • Kazak, S., Pratt, D., & Gökce, R. (2018). Sixth grade students’ emerging practices of data modelling. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0988-3.

    Article  Google Scholar 

  • Konold, C., Finzer, W., & Kreetong, K. (2017). Modeling as a core component of structuring data. Statistics Education Research Journal, 16(2), 191–212.

    Google Scholar 

  • Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning, 12(3), 217–230.

    Article  Google Scholar 

  • Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education, 2(1), 1–37.

    Google Scholar 

  • Konold, C., & Lehrer, R. (2008). Technology and mathematics education: An essay in honor of Jim Kaput. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 49–72). New York: Routledge.

    Google Scholar 

  • Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., Finzer, W., Horton, N., & Kazak, S. (2011). Conceptual challenges in coordinating theoretical and data-centered estimates of probability. Mathematical Thinking and Learning, 13(1&2), 68–86.

    Article  Google Scholar 

  • Konold, C., & Miller, C. (2011). TinkerPlotsVersion 2.3 [computer software]. Amherst: Learn Troop.

    Google Scholar 

  • Lehrer, R. (2017). Modeling signal-noise processes supports student construction of a hierarchical image of sample. Statistics Education Research Journal, 16(2), 64–85.

    Google Scholar 

  • Lehrer, R., & English, E. (2018). Introducing children to modeling variability. In D. Ben-Zvi, J. Garfield & K. Makar (Eds.), International handbook of research in statistics education (pp. 229–260). New York: Springer.

    Chapter  Google Scholar 

  • Lesh, R., & Doerr, H. (Eds.). (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 763–802). Greenwich: Information Age Publishing.

    Google Scholar 

  • Lightner, J. (1991). A brief look at the history of probability and statistics. Mathematics Teacher, 84(8), 623–630.

    Google Scholar 

  • Makar, K., & Allmond, S. (2018). Statistical modeling and repeatable structures: Purpose, process and prediction. ZDM Mathematics Education (this issue).

  • Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13(1&2), 152–173.

    Article  Google Scholar 

  • Makar, K., & Rubin, A. (2018). Research on inference. In D. Ben-Zvi, J. Garfield & K. Makar (Eds.), International handbook of research in statistics education (pp. 261–294). New York: Springer.

    Chapter  Google Scholar 

  • Manor Braham, H., & Ben-Zvi, D. (2017). Students’ emergent articulations of statistical models and modelling in making informal statistical inferences. Statistics Education Research Journal, 16(2), 116–143.

    Google Scholar 

  • Noll, J., Clement, K., Dolor, J., & Petersen, M. (2018). Students’ use of narrative when constructing statistical models in TinkerPlots™. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0981-x.

    Article  Google Scholar 

  • Noll, J., & Kirin, D. (2017). TinkerPlots™ model construction approaches for comparing two groups: Student perspectives. Statistics Education Research Journal, 16(2), 213–243.

    Google Scholar 

  • Patel, A., & Pfannkuch, M. (2018). Developing a statistical modeling framework to characterize Year 7 students’ reasoning. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0960-2.

    Article  Google Scholar 

  • Pfannkuch, M. (2011). The role of context in developing informal statistical inferential reasoning: A classroom study. Mathematical Thinking and Learning, 13(1&2), 27–46.

    Article  Google Scholar 

  • Pfannkuch, M., & Budgett, S. (2016). Markov processes: Exploring the use of dynamic visualizations to enhance student understanding. Journal of Statistics Education, 24(2), 63–73.

    Article  Google Scholar 

  • Pfannkuch, M., Budgett, S., Fewster, R., Fitch, M., Pattenwise, S., Wild, C., & Ziedins, I. (2016). Probability modelling and thinking: What can we learn from practice? Statistics Education Research Journal, 15(2), 11–37.

    Google Scholar 

  • Pfannkuch, M., & Ziedins, I. (2014). A modelling perspective on probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 101–116). New York: Springer.

    Chapter  Google Scholar 

  • Pratt, D. (2011). Re-connecting probability and reasoning from data in secondary school teaching. In Proceedings of the 58th International Statistical Institute World Statistical Congress, Dublin (pp. 890–899). The Hague: International Statistical Institute.

  • Pratt, D., & Noss, R. (2010). Designing for mathematical abstraction. International Journal of Computers for Mathematical Learning, 15(2), 81–97.

    Article  Google Scholar 

  • Resnick, L. (1988). Treating mathematics as an ill-structured discipline. In R. Charles & E. Silver (Eds.), The teaching and assessing of mathematical problem solving (pp. 32–60). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Shinohara, M., & Lehrer, R. (2017). Narrating lines of practice: Students’ views of their participation in statistical practices. In Proceedings of the 10th Statistical Reasoning, Thinking and Literacy Forum, Rotorua, New Zealand (pp. 15–33). Auckland: SRTL.

  • Stillman, G., Kaiser, G., Blum, W., & Brown, J. (Eds.). (2013). Teaching mathematical modeling: Connecting research to practice. Dordrecht: Springer.

    Google Scholar 

  • Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry (with discussion). International Statistical Review, 67(3), 223–265.

    Article  Google Scholar 

  • Wild, C. J., Pfannkuch, M., Regan, M., & Parsonage, R. (2017). Accessible conceptions of statistical inference: Pulling ourselves up by the bootstraps. International Statistical Review, 85(1), 84–107.

    Article  Google Scholar 

  • Wilkerson, M., & Laina, V. (2018). Middle school students’ reasoning about data, context, and chance through storytelling with repurposed local data. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0974-9.

    Article  Google Scholar 

  • Zapata-Cardona, L. (2018). Students’ construction and use of models for informal inferential reasoning. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-0967-8.

    Article  Google Scholar 

  • Zieffler, A. (2017). Panel presentation communication at the 10th statistical reasoning, thinking and literacy forum, Rotorua, New Zealand.

Download references

Acknowledgements

We thank Michal Dvir for her thorough feedback and comments on the paper and assistance in drawing out the main framework themes presented at SRTL-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxine Pfannkuch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfannkuch, M., Ben-Zvi, D. & Budgett, S. Innovations in statistical modeling to connect data, chance and context. ZDM Mathematics Education 50, 1113–1123 (2018). https://doi.org/10.1007/s11858-018-0989-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0989-2

Keywords

  • Statistics Education Researchers
  • Statistical Modeling Process
  • TinkerPlots
  • Prebuilt Models
  • Konold