Modeling and linking the Poisson and exponential distributions

Abstract

Randomness and distribution are important concepts underpinning the ability to think and reason probabilistically. Traditional approaches to teaching the Poisson distribution focus on mathematical definitions and formulae which obscure the randomness intrinsic in this process. Advances in technology have made it possible for students learning about probability to model the Poisson process. In this paper we explore the reasoning of six introductory probability students as they interacted with a prototype software designed to visibilize randomness, and to make transparent the link between the Poisson and exponential distributions. We focus on a task involving both real data and simulated data. Our findings highlight the fact that the tool and tasks seem to help students’ understanding of the link between the Poisson and exponential distributions, and to gain a deeper appreciation of distribution and randomness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 147–168). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  2. Barton, D., & Lavery, C. (2012). Sigma statistics: NCEA level 3. Auckland: Pearson.

    Google Scholar 

  3. Batanero, C., Chernoff, E., Engel, J., Lee, H., & Sanchez, E. (2016). Research on teaching and learning probability. In Proceedings of topic study group 14 at the 13th international conference on mathematics education (ICME) (pp. 1–33). Hamburg, Germany. https://doi.org/10.1007/978-3-319-31625-3_1.

    Google Scholar 

  4. Biehler, R. (1991). Computers in probability education. In R. Kapadia & M. Borovnick (Eds.), Chance encounters: Probability in education (pp. 169–211). Boston: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  5. Blitzstein, J. K., & Hwang, J. (2014). Introduction to probability. New York: CRC Press.

    Book  Google Scholar 

  6. Budgett, S., Pfannkuch, M., Regan, M., & Wild, C. J. (2013). Dynamic visualizations and the randomization test. Technology Innovations in Statistics Education, 7(2), 1–21.

    Google Scholar 

  7. Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning of statistics. Technology Innovations in Statistics Education, 1(1), 1–26.

    Google Scholar 

  8. Chance, B., del Mas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 295–323). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  9. Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: Modeling and simulation in statistics and probability teaching. In C. Batanero, G. Burrill & C. Reading (Eds.), Teaching statistics in school mathematics - Challenges for teachers and teacher education. A joint ICMI/IASE study: The 18th ICMI Study (pp. 85–95). New York: Springer.

    Chapter  Google Scholar 

  10. Chernoff, E. J., & Sriraman, B. (Eds.). (2014). Probabilistic thinking: Presenting plural perspectives. Dordrecht: Springer.

    Google Scholar 

  11. Chu, S. (2003). Using soccer goals to motivate Poisson process. INFORMS Transactions on Education, 3(2), 64–70.

    Article  Google Scholar 

  12. Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. The American Mathematical Monthly, 104(9), 801–823.

    Article  Google Scholar 

  13. Cobb, P., & McClain, K. (2004). Principles of instructional design for supporting the development of students’ statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 375–396). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  14. Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 75–99). Dordrecht: Springer.

    Chapter  Google Scholar 

  15. English, L. D., & Watson, J. M. (2016). Development of probabilistic understanding in fourth grade. Journal for Research in Mathematics Education, 47(1), 28–62.

    Article  Google Scholar 

  16. Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM - International Journal on Mathematics Education, 44(7), 883–898.

    Article  Google Scholar 

  17. Johnson, R. W. (2017). Discovering patterns in interarrival data. Teaching Statistics, 39(2), 42–46.

    Article  Google Scholar 

  18. Johnston-Wilder, P., & Pratt, D. (2007). The relationship between local and global perspectives on randomness. In D. Pitta & G. Philippou (Eds.), Proceedings of the fifth European conference on research in mathematics education. Larnaca: ERME.

    Google Scholar 

  19. Kahneman, D. (2011). Thinking, fast and slow. New York: Allen Lane.

    Google Scholar 

  20. Kazak, S., Fujita, T., & Wegerif, R. (2016). Students’ informal inference about the binomial distribution of “bunny hops”: A dialogic perspective. Statistics Education Research Journal, 15(2), 46–61.

    Google Scholar 

  21. Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2015). Data seen through different lenses. Educational Studies in Mathematics, 88(3), 305–325.

    Article  Google Scholar 

  22. Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education, 2(1). http://repositories.cdlib.org/uclastat/cts/tise/vol2/iss1/art1/

  23. Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., Finzer, W., Horton, N. J., & Kazak, S. (2011). Conceptual challenges in coordinating theoretical and data-centered estimates of probability. Mathematical Thinking and Learning, 13(1&2), 68–86.

    Article  Google Scholar 

  24. Lane, D. M., & Peres, S. C. (2006). Interactive simulations in the teaching of statistics: promise and pitfalls. In A. Rossman & B. Chance (Eds.), Proceedings of the seventh international conference on teaching statistics, Salvador, Brazil. Voorburg: International Statistical Institute..

    Google Scholar 

  25. Lee, H. S., & Lee, J. T. (2009). Reasoning about probabilistic phenomena: Lessons learned and applied in software design. Technology Innovations in Statistics Education, 3(2), 1–22.

    Google Scholar 

  26. MacGillivray, H. (2006). Using data, student experiences and collaboration in developing probabilistic reasoning at the introductory tertiary level. In A. Rossman & B. Chance (Eds.), Proceedings of the 7th international conference on teaching statistics, Salvador, Brazil. Voorburg: International Statistical Institute.

    Google Scholar 

  27. Makar, K., & Ben-Zvi, D. (2011). The role of context in developing reasoning about informal statistical inference. Mathematical Thinking and Learning, 4(3), 1–4.

    Article  Google Scholar 

  28. Martignon, L., & Krauss, S. (2009). Hands-on activities for fourth graders: A tool box for decision-making and reckoning with risk. International Electronic Journal of Mathematics Education, 4(3), 117–148.

    Google Scholar 

  29. Nickerson, R. S. (2002). The production and perception of randomness. Psychological Review, 109(2), 330–357.

    Article  Google Scholar 

  30. Patton, M. Q. (2015). Qualitative research and evaluation methods. London: Sage.

    Google Scholar 

  31. Peres, S. C., Lane, D. M., & Griggs, K. R. (2010). Using simulations for active learning: the query-first method in practice. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the eighth international conference on teaching statistics, Ljubljana, Slovenia. Voorburg: International Statistical Institute.

    Google Scholar 

  32. Pfannkuch, M., & Budgett, S. (2016). Markov processes: Exploring the use of dynamic visualizations to enhance student understanding. Journal of Statistics Education, 24(2), 63–73. https://doi.org/10.1080/10691898.2016.1207404.

    Article  Google Scholar 

  33. Pfannkuch, M., Budgett, S., Fewster, R., Fitch, M., Pattenwise, S., Wild, C., & Ziedins, I. (2016). Probability modelling and thinking: What can we learn from practice? Statistics Education Research Journal, 15(2), 11–37.

    Google Scholar 

  34. Pfannkuch, M., & Ziedins, I. (2014). A modelling perspective on probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 101–116). New York: Springer.

    Chapter  Google Scholar 

  35. Poisson, S. D. (1837). Recherches sur la probabilité des jugements en matiere criminelle et en matière civile, précédées des règles générales du calcul des probabilités. Paris: Bachelier.

    Google Scholar 

  36. Pratt, D. (2000). Making sense of the total of two dice. Journal for Research in Mathematics Education, 31(5), 602–625.

    Article  Google Scholar 

  37. Pratt, D. (2011). Re-connecting probability and reasoning from data in secondary school teaching. In Proceedings of the 58th international statistical institute world statistics congress (pp. 890–899). The Hague, The Netherlands: International Statistical Institute.

  38. Ross, S. M. (2010). Introduction to probability models. Burlington: Academic Press.

    Google Scholar 

  39. Schoenfeld, A. (2007). Method. In F. Lester (Ed.), Second handbook of research on the teaching and learning of mathematics (pp. 96–107). Charlotte: Information Age Publishers.

    Google Scholar 

  40. Shaughnessy, J. M. (2014). Commentary on the chapters on probability from a stochastic perspective. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 481–489). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7155-0_25.

    Chapter  Google Scholar 

  41. Taleb, N. N. (2005). Fooled by randomness. New York: Random House.

    Google Scholar 

  42. Thomas, M. O. (2008). Conceptual representations and versatile mathematical thinking. In Proceedings of the tenth international congress in mathematics education (pp. 1–18). Copenhagen, Denmark.

  43. von Bortkewitsch, L. (1898). Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.

    Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Teaching and Learning Research Initiative (tlri.org.nz).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephanie Budgett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Budgett, S., Pfannkuch, M. Modeling and linking the Poisson and exponential distributions. ZDM Mathematics Education 50, 1281–1294 (2018). https://doi.org/10.1007/s11858-018-0957-x

Download citation

Keywords

  • Modeling
  • Simulation
  • Poisson process
  • Distribution
  • Randomness